Modern techniques to assess shelf life and safety

TNO Quality of Life

Erik Hoornstra

Introduction

- Principles of risk assessment
- Quantitative risk assessment
- Example
- Risk assessment in TTI
- Safety and shelf-life

TNO Department Microbiology

- Research during product and process innovation
- Novel preservation strategies
- Testing and Validation
- European Hygienic Engineering and Design Group (EHEDG) certified test laboratory
- Trouble-shooting and emergencies (24 hour service)
- Rapid detection tools
- New developments: genomics & metabolomics

The challenge for food companies

Safety Freshness Convenience Shelf-life Government FSO's Customer requirements Consumer demands Company objectives

Criteria for:

- Product
- **Process**
- Storage

What is safe food ?

Why define safe food

EU

- "The free movement of safe and wholesome food ..."
- **"Food shall not be placed on the market if it is unsafe"**
- "A high level of protection of human life and health ..."
- "... free movement ... only if food safety requirements do not differ from Member State to Member State"
- "The Community has chosen a high level of health protection ..."

Other aspects of defining safe food

EU

- "It is necessary to ensure that consumers, other stakeholders and trading partners have confidence in the decision making process"
- "... risk analysis provides a systematic methodology for the determination of effective, proportionate and targeted measures to protect health"
- "... scientific risk assessment alone cannot provide all the information on which a risk management decision should be based ...societal, economic, traditional, ethical and environmental factors and the feasibility of controls"
- Precautionary principle: risk is identified but unknown / uncertainty

Who should define food safety

EU

- "... the European Food Safety Authority should provide a comprehensive independent scientific view of the safety of the food"
- "EFSA should be able to commission scientific studies ..."

Remember

• Defining food safety is a political issue

Safe food

EU

- Unsafe = "Injurious to health"
- Unsafe = "Unfit for human consumption"
- "... normal conditions of use of the food by the consumer and at each stage of production, processing and distribution"
- "... information provided to the consumer ... information on label ..."
- "... according to its intended use."
- "... any food which is unsafe is part of a batch ... all food in that batch is unsafe, unless ... detailed assessment ..."
- "Traceability: Identify any person from whom they have been supplied ..."

Safe food – ALOP and FSO

- **ALOP** = appropriate level of protection
- FSO is maximum level of a hazard at the moment of consumption

Safe food – Derived concepts from FSO

<u>Performance objectives</u> (in the food chain)

- *"Salmonella* shall not exceed 1 cfu / 10 ml before distribution"
- *'Listeria* absent per 25 gram in chilled foods (where it is able to grow)'

Performance criteria (change during a step)

- "Assure a 12 log reduction of *C. botulinum* in low acid canned foods"
- "Juice process should achieve 5 log reduction of *E. coli* and *Salmonella*"
- "Avoid more than 3 log increase of *S. aureus* during meat fermentation"

<u>Process criteria</u>

- 2.4 minutes 121°C for sterilisation
- 15 seconds 71°C for commercial pasteurisation of milk
- Storage temperature < 7 C

Risk assessment at two levels

Risk analysis

Hazard identification

Government

- Epidemiology
- (Public) opinion

Food company

- Raw materials
- Production process
- Product: complaints, history

Hazard characterization

Government

- Dose-response relation
 - Virulence of microorganism
 - Consumer sensitivity

Food company

- Criteria
 - Food Safety Objectives
 - Legislation
 - Specifications

Exposure assessment

Risk factors

- Occurrence in raw materials
- Growth
- Inactivation
- Mixing, portioning
- Recontamination

• Quantification

- Single point: worst-case
- Single point: what if
- Probability distribution functions

Risk characterization

- Risk estimate:
- Risk classes: f (occurrence, severity)

0.....1

- Risk profile
- Prioritize control measures
- Scenario analyses
- Uncertainty and variability

Learnings from first years of experience using QRA (negative)

- Quantitative risk assessment may be time consuming
- Sometimes trivial results
- Uncertainty about risk factors
- Results difficult to understand by managers
- Lack of data
- Do we really understand what is going on

Learnings from first years of experience using QRA (positive)

- Zero risk does not exist
- Quantification gives a lot of insight
- Uncertainty and variability
- List most important risk factors
- Scenario analysis for efficient improvements
- Meaningful sampling

Single point estimation vs. Probability distribution functions

10 x 10 = 1001 x 10 = 10 5 x 10 = 50 20 x 10 = 200

Single point calculations

Example: total travel time = **bicycle** + **train** + **bus**

Result	50 min. best case	65 min. most likely	100 min. worst case
	10	15	20
	35	40	60
	5	10	20
3	minimum	most likely	maximum

Probability distribution functions

 Average time
 68 min

 Time < 60 min</td>
 5.1 %

 Time > 80 min
 11 %

 Time > 90 min
 0.01 %

Probability distribution functions

Cumulative probability function

Sensitivity analysis

Monte Carlo simulation in @Risk

J.

🔁 @RISK									
<u>F</u> ile <u>E</u> dit <u>S</u> ettings <u>V</u> ariables E <u>x</u> ecute <u>R</u> esults <u>W</u> indow <u>H</u> elp									
Open Save	A Simul	ate Results Gra	aph Summery	i Hie	Je				
📅 Results								_	. 🗆 ×
Simulation	Sum	mary of Results	;						
Simulation #1:	Cell		Name			Minimum	Mean	Maximum	_
Iterations= 100000 Simulations= 1	E6	C feces / E				-1,276251	2,091336	5,559983	
# Input Variables= 19	E7	overdracht / E				-9,669935	-5,100007	-1,21099	
# Output Variables= 26	E9	C cm snippers / E				1,6506E-09	0,3658856	711,314	
Sampling Type= Latin Hypercube	E12	oppervlakte / E				0,7504331	1	1,249238	_
Bun on 18-12-98 15:21:15	E14	C g snippers / E				1,476751E-09	0,3683755	785,5647	
	E16	m/E				113,6647	135	157,1977	-
			Statistic	.	Data Ser	ositivitu I Sr			
				°			Schanos		1-1-1
Simulation Statistics				JUutp	out Graph - Cell I	:/			
					Distribut	ion for ou	ordroobt /		
					Distribut		erurachi.7		
Name overdracht / E	C	cm snippers / E	ot		0,197 ₁	; ; ;	$\mathbf{\Delta}$		7
Description Output	0	utput	0				$I \rightarrow I$		
Cell E7	E	9	E.	\geq	0,158+	·	1-1-1-1-1		-
Minimum = -9,669935	1	6506E-09	0,	5	0.440		$C = (\Lambda)$	1	
Maximum = -1,21099	7	11,314	1,	E E	0,118+	,	···· Y - Y -		
Mean = -5,100007	U	3658856	1	ğ	0.079	. [-
Std Deviation = 0,8353839	6	473752	0,	Ř	0,010		-1		
	4 6	1,50547 1.08717		ā	0,039		·	·	-
3Kewness = 14,0403362-04	-							N I	
Current Variables: Outputs=26, Inputs=19 Settings: Simulations=1 Iterations=1									
🙀 Start 🧶 Post Fo 💱 Hoornst 📧	Micros	o 🔀 Microso	😽 Paint S.	🔍	Verken 🔚 🚟 Gra	aphic 🔽 @	RISK	E	n 11:54

Exposure assessment of *E. coli* O157:H7

Risk characterisation of *E. coli* O157:H7

Probability of illness after consumption

- Average, most likely, 90% confidence interval
- Probability of exceeding ALOP

Risk assessment of *E. coli* O157:H7 in raw fermented sausage

- Pathogens can be present in raw meat
- Fermentation results in reduction of pathogens
- No additional heating step

Risk assessment of *E. coli* O157:H7 in raw fermented sausage

	contamination	performance	end product
• worst-case	1000 / g	5 D	1 / 100 g
• "what if"	1 / g	2 D 3 D	1 / 100 g 1 on 10 with 1 / 100 g

If 1000 / g occurs in 0.1% of cases

If 1 / 100 g results in probability of illness of 0.1%

5D results in risk of 1 in million **ACCEPTABLE ???**

3D results in risk of 1 in 10,000

ACCEPTABLE ???

Risk assessment in TTI

Occurrence of pathogens on raw meat

Temperature distribution in retail

Average temperatures in displays for fresh meat or meat products in different supermarket chains

9-08-03

20:00

Temperature distribution in households

Refrigerators with average temperatures above 7°C

-Upper tray	60%
-Lower tray	33%
-Overall	42%
-Upper and lower tray	33%

Modelling to predict safety and shelf-life

From TTI to SMAS

TTI

- Responds independent of initial level
- Prediction: SSO increase 0 log, 3 log, 5 log
- Prediction: pathogens increase not, factor 2, factor 10

SMAS

- Remaining shelf-life is ...
- (Risk of spoilage is ... % (depending on initial level))
- Risk of illness is increased by factor ...
- (Risk of illness is ... % (depending on initial level and cooking, etc.)

Discussion about risk assessment

- Define scope and objectives before risk assessment
- Use experts
 - product/process, microbiology, statistics
- Limit the models to relevant factors
 - raw materials, process, storage, (consumer)
- Verification of results with available data
 - microbiology, epidemiology

