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Abstract

Salmonella is a leading cause of foodborne outbreaks and systemic infections worldwide. Emerging multi-drug resistant Sal-
monella lineages such as a ciprofloxacin-resistant subclade (CIPR) within Salmonella enterica serovar Kentucky ST198 threaten 
the effective prevention and treatment of infections. To understand the genomic diversity and antimicrobial resistance gene 
content associated with S. Kentucky in Switzerland, we whole-genome sequenced 70 human clinical isolates obtained between 
2010 and 2020. Most isolates belonged to ST198-CIPR. High- and low-level ciprofloxacin resistance among CIPR isolates was 
associated with variable mutations in ramR and acrB in combination with stable mutations in quinolone-resistance determin-
ing regions (QRDRs). Analysis of isolates from patients with prolonged ST198 colonization indicated subclonal adaptions with 
the ramR locus as a mutational hotspot. SNP analyses identified multiple clusters of near-identical isolates, which were often 
associated with travel but included spatiotemporally linked isolates from Switzerland. The largest SNP cluster was associated 
with travellers returning from Indonesia, and investigation of global data linked >60 additional ST198 salmonellosis isolates to 
this cluster. Our results emphasize the urgent need for implementing whole-genome sequencing as a routine tool for Salmo-
nella surveillance and outbreak detection.

DATA SUMMARY
Sequencing read data and genome assemblies of S. enterica isolates have been deposited at NCBI under BioProject accession 
number PRJNA803326. Individual accession numbers of newly sequenced Swiss isolates and associated metadata are listed in 
(Table S1, available in the online version of this article). Accession numbers of previously sequenced genomes from global isolates 
are listed in Table S6.

INTRODUCTION
Salmonella enterica (S. enterica) is a major cause of foodborne disease in humans. In the European Union, Salmonella causes up 
to 100 000 gastrointestinal infections annually, making it the most common zoonotic pathogen after Campylobacter [1]. Salmo-
nellosis typically presents with non-severe symptoms and is self-limited. Treatment with antibiotics (commonly ciprofloxacin, 
third-generation cephalosporins, or azithromycin) is however critical for patients with persistent or severe disease, which particu-
larly affects immunocompromised or debilitated patients [2]. The emergence and spread of antimicrobial resistance (AMR) in 
Salmonella is thus a serious concern for public health. Ciprofloxacin-resistant Salmonella are classified as high-priority pathogens 
on the WHO list of resistant bacteria for which research and development strategies are urgently needed [3]. Ciprofloxacin 
resistance or reduced susceptibility has emerged in various S. enterica serotypes due to target mutations in quinolone-resistance 
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determining regions (QRDRs) of DNA gyrase (gyrA and gyrB) and type IV topoisomerase (parC and parE) or the acquisition of 
plasmid-mediated quinolone resistance genes (PMQR; including aac(6′)lb-cr, oqxAB, qepA, qnrA, qnrB, qnrC, qnrD, and qnrS) 
[4–8]. Mutations affecting the functionality or expression of intrinsic porins such as OmpF or multi-drug efflux pumps such as 
the AcrAB-TolC complex also affect fluoroquinolone susceptibility [9, 10].

One of the S. enterica serovars notorious for its high rate of antimicrobial resistance is S. enterica subspecies enterica serovar 
Kentucky (S. Kentucky). The S. Kentucky serovar distribution is polyphyletic and encompasses distantly related lineages including 
ST314, ST152, and ST198. The latter comprises two major clades, ST198.1 and ST198.2 [11, 12]. Multi-drug resistant S. Kentucky 
isolates typically belong to a specific subclade (ST198-CIPR) embedded within ST198.2. ST198-CIPR is characterized by chromo-
somal mutations in QRDRs conferring resistance against nalidixic acid and ciprofloxacin, namely mutations in gyrA codon 83 
(S83F) and parC codon 80 (S80I), as well as one of three possible mutations in gyrA codon 87 (D87G, D87N, or D87Y), which 
are required for full ciprofloxacin resistance [13]. Subclade ST198-CIPR isolates are frequently resistant to additional antibiotics 
including aminoglycosides, beta-lactams, sulfamethoxazole, and tetracycline [13, 14]. The acquisition of the resistance genes 
aac(3)-Id (also termed aacA5), aadA7, blaTEM-1, sul1, and tetA was linked to the chromosomal integration of the transferable 
Salmonella genomic island (SGI) 1 variant SGI1-K [13].

Phylogenomic analyses suggested that ST198-CIPR emerged in Northern Africa in the early 1990s followed by an epidemic spread 
across Africa, Asia, and Europe [13], coinciding with increased fluoroquinolone use in humans and animals worldwide [15, 16]. 
Poultry are assumed to be a major reservoir of ST198 and recent surveillance studies indicate the circulation of ST198-CIPR clones 
in poultry farms in Europe and Asia [17–20]. Human S. Kentucky infections in Europe and North America are often associated 
with travel to Asia or Africa [20–25]. In the EU, approximately half of all human S. Kentucky cases are acquired outside of the 
EU [26]. Little information is available on the characteristics and transmission of S. Kentucky isolates in Switzerland.

Although uncommon and not well understood, non-typhoidal Salmonella (NTS) can persist in patients over an extended period 
spanning months or even years [27–29]. In a large study in Israel, prolonged (>30 days) NTS carriage was found in around 2 % 
of all reported salmonellosis cases, of which 65 % presented with relapsing symptoms [27]. Prolonged colonization is frequently 
observed despite antibiotic treatment, which can be explained by various factors including antimicrobial resistance or tolerance, 
insufficient antibiotic concentrations at the colonized niches, or the formation of antibiotic persisters [30]. Antibiotic persisters 
achieve transient antibiotic tolerance by switching into a non-growing or slow-growing state, resulting in reduced antibiotic 
uptake or low target activity [30].

This study provides an in-depth analysis of the population structure, resistome, and epidemiological links of 70 S. Kentucky 
isolates that caused human infections in the past decade in Switzerland. We further aimed to investigate genetic determinants 
underlying varying ciprofloxacin resistance and adaptions of isolates from patients with prolonged colonization. Our results reveal 
transmission clusters caused by both locally circulating and travel-acquired ST198 clones. Inactivating mutations in ramR, an 
AcrAB-TolC expression regulator, contributed to high-level ciprofloxacin resistance and were frequently detected in persisting 
strains, providing a strategy for survival in the presence of ciprofloxacin.

METHODS
Bacterial isolates and antimicrobial susceptibility testing
S. Kentucky isolates investigated in this study were obtained between 2010 and 2020 at the Swiss National Reference Centre 
for Enteropathogenic Bacteria and Listeria (NENT). The NENT receives human clinical Salmonella isolates from diagnostic 
laboratories or medical centres in Switzerland. Antimicrobial susceptibility testing with ciprofloxacin (range 0.002–32 µg ml−1) was 
performed using Etest (bioMérieux). For selected isolates, ciprofloxacin susceptibility testing results were confirmed using broth 
microdilution according to CLSI guidelines [31] in the presence and absence of efflux pump inhibitor PAβN (final concentration 
20 µg ml−1). Testing with 15 additional antibiotics (amoxicillin/clavulanic acid [20/10 µg], ampicillin [10 µg], azithromycin [15 µg], 
cefepime [30 µg], cefotaxime [30 µg], cefazolin [30 µg], chloramphenicol [30 µg], fosfomycin [200 µg], gentamicin [10 µg], kana-
mycin [30 µg], nitrofurantoin [300 µg], streptomycin [10 µg], sulfamethoxazole-trimethoprim [23.75/1.25 µg], and tetracycline 

Impact Statement

The multi-drug resistant S. Kentucky ST198 CIPR subclade has first emerged in the 1990s in Africa and subsequently spread to 
Asia and Europe. Our data confirm a predominance of the CIPR subclade among human infections in Switzerland. Cases were 
however often travel-associated, with multiple infections caused by a clonal strain linked to Indonesia. Prolonged carriage 
of ST198 was relatively common and persisting strains often contained inactivating mutations in ramR, leading to high-level 
ciprofloxacin resistance. Our study provides genomic insights into the population structure, resistome, and evolution of this 
pathogen.
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[30 µg]) was performed using the disc diffusion method (BD). Isolates with carbapenemase genes were additionally tested 
using meropenem, imipenem, and ertapenem Etests (range 0.002–32 µg ml−1 each; bioMérieux). Breakpoints for ciprofloxacin 
(susceptible: ≤0.06 µg ml−1; intermediate: 0.12–0.5 µg ml−1; resistant: ≥1 µg ml−1) and other antibiotics (described in Table S5) were 
interpreted according to CLSI guidelines [31].

Whole-genome sequencing
A total of 74 isolates were selected for Illumina whole-genome sequencing. These included 70 isolates from 70 patients chosen 
from every second year within the study time span, comprising isolates from years 2010 (n=6), 2012 (n=14), 2014 (n=14), 2016 
(n=17), 2018 (n=15), and 2020 (n=4). For four patients with a prolonged carriage, second isolates were sequenced (listed in Table 
S1). Additional long-read sequencing was performed for three ESBL-producing isolates (N12-0931, N12-1542, N16-1393) and 
two isolates from patients with prolonged S. Kentucky colonization (N12-0259, N18-2092).

For short-read sequencing, genomic DNA was extracted using the DNeasy Blood and Tissue Kit (Qiagen). Short-read libraries 
were prepared using the Nextera DNA Flex Library Preparation Kit (Illumina) and sequenced on the Illumina MiniSeq platform 
with 2×150 bp paired-end chemistries. Illumina read adapters and low-quality bases were trimmed with TrimGalore 0.6.61 
(https://github.com/FelixKrueger/TrimGalore) and draft genomes assembled using SPAdes 3.14.1 [32] implemented in shovill 
1.1.03 (https://github.com/tseemann/shovill). For long-read sequencing, genomic DNA was extracted using the MasterPure 
Complete DNA and RNA Purification Kit (Lucigen). Multiplex libraries were prepared using the SQK-LSK109 ligation sequencing 
kit with the EXP-NBD114 native barcoding expansion kit (Oxford Nanopore Technologies). Libraries were sequenced on a 
MinION Mk1B device using the FLO-MIN106 (R9) flow cell (Oxford Nanopore Technologies). Basecalling and demultiplexing 
were performed with guppy 4.2.2 (Oxford Nanopore Technologies) and adapters were trimmed with Porechop 0.2.4. Hybrid 
assemblies were generated with Unicycler v.0.4.8 [33] using default settings. The genomic location of antimicrobial resistance 
genes was confirmed in assemblies generated from long-read data alone using flye 2.8.1 [34] with subsequent polishing using 
Medaka 1.6.0 (https://github.com/nanoporetech/medaka), and Polypolish v0.5.0 [35]. Assembly quality was assessed using 
QUAST 5.0.2 [36] and CheckM v1.1.3 [37].

Genome analyses
Isolates were typed in silico using mlst 2.19.0 (https://github.com/tseemann/mlst) and SeqSero2 1.2.1 [38]. Genes were annotated 
with PGAP 2021-01-11.build5132 [39]. Antimicrobial resistance genes and plasmid replicons were identified using ABRicate 1.0.0 
(https://github.com/tseemann/abricate) (90 % coverage, 90 % identity) in combination with the ResFinder [40] and PlasmidFinder 
databases [41], respectively. Plasmids were compared to those available in the NCBI nucleotide collection using BLASTn [42]. 
Mutations in QRDRs were identified using AMRFinderPlus [43]. Mutations in loci involved in ciprofloxacin import or efflux 
(acrAB, acrEF, acrZ, ompF, tolC) or its regulation (acrR, acrS, marRAB, micF, phoQP, ramRA, rob, sidA, and soxRS) were detected 
using Snippy 4.6.0 (https://github.com/tseemann/snippy) and BLASTn implemented in ABRicate 1.0.0 with respective loci from 
isolate N12-1542 (CP092006) as references.

Core genome SNPs (cgSNPs) were detected from Illumina read data using the Snippy pipeline 4.6.0 with the chromosome of strain 
N12-1542 (ST198-CIPR subclade; CP092006) as reference. Phages, IS elements, and repeat regions in the reference chromosome 
were identified with PHASTER [44], ISEScan 1.7.2.3 [45], and NUCmer 3.1 [46] and masked before read-mapping. Recombinant 
regions in the Snippy core genome alignment were identified with gubbins 2.4.1 [47]. Maximum-likelihood phylogenetic trees 
were constructed from the recombination-free cgSNP alignment using IQ-TREE 2.0.3 [48] with the generalized time-reversible 
(GTR) model with gamma distribution, 100 bootstraps, and the number of invariant sites (-fconst option), which were deter-
mined from the Snippy core genome alignment using SNP-sites 2.5.1 (-C option) [49]. cgSNP distances were determined from 
recombination-free cgSNP alignments with snp-dists 0.7.0 (https://github.com/tseemann/SNP-dists). When mentioned, the 
CFSAN SNP pipeline 2.2.1 [50] was used as an alternative approach to determine cgSNP distances. Isolates within 10 cgSNPs of 
each other were considered a potential cluster for further epidemiological investigation.

Publicly available pre-assembled genomes of S. Kentucky ST198 isolates from human and non-human sources and associated 
metadata were obtained from EnteroBase (accessed on 29 November 2021) [51]. Assemblies with N50 <50 kb, >50 000 low-
quality bases, or unusual genome sizes (<4.7 or >5.1 MB) were excluded. A phylogeny of global isolates was constructed from an 
assembly-based core genome alignment generated with parsnp 1.5.3 [52]. Phages, IS elements, repeat regions, and recombinant 
sites were masked from the alignment, and a maximum-likelihood phylogenetic tree was constructed with IQ-TREE 2.0.3 as 
described above.

Whole-genome SNPs (wgSNPs) in putative same-strain isolates from patients with prolonged colonization were identified by 
mapping reads to the draft or, when available, complete assembly of respective first-isolates using the Snippy pipeline 4.6.0. 
Identified wgSNPs were additionally manually inspected and curated using the variant detection module in CLC Genomics 
Workbench 21.0.4. Core genome MLST (cgMLST) profiles were called using chewBACCA 2.8.5 [53] with the S. enterica scheme 
from INNUENDO (available at https://zenodo.org/record/1323684#.YfpYCurMKUk), which includes 8558 loci and was curated 

https://github.com/FelixKrueger/TrimGalore
https://github.com/tseemann/shovill
https://github.com/nanoporetech/medaka
https://github.com/tseemann/mlst
https://github.com/tseemann/abricate
https://github.com/tseemann/snippy
https://github.com/tseemann/SNP-dists
https://zenodo.org/record/1323684#.YfpYCurMKUk
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from the EnteroBase wgMLST scheme [51]. Pairwise distances for alleles present in all investigated genomes were calculated 
using cgmlsts-dists 0.4.0 (https://github.com/tseemann/cgmlst-dists). Comparisons of genomic regions were generated with 
EasyFig 2.1 [54].

Epidemiology
Patient data including age and residential location were retrieved from the NENT database. A map showing the geographic distri-
bution of clinical cases was generated in R 4.0.3 [55] with the sf [56] and ggplot2 [57] packages. Geometric and demographic data 
was retrieved from the Swiss Federal Statistical Office. Travel-associated cases were defined as those with reported travel within 
28 days before symptom onset. The travel history of ST198 salmonellosis patients from England and Switzerland was analysed 
alongside the phylogeny to determine potential geographical sources of detected clusters. Cases with putative prolonged carriage 
(i.e. multiple isolates from the same patient obtained >3 weeks apart) were classified as convalescent carriage (3 to 12 weeks), 
temporary carriage (3 to 12 months), and chronic carriage (>12 months) [58].

RESULTS
Prevalence and distribution of serovar Kentucky among human clinical Salmonella isolates in Switzerland
Between 2010 and 2020, the Swiss National Centre for Enteropathogenic Bacteria and Listeria (NENT) identified a total of 
198 S. Kentucky isolates (nine to 30 isolates received annually) from 156 patients, accounting for 1.4 % of all received clinical 
Salmonella isolates (n=14496). The isolates were recovered from stool (n=154), urine (n=23), blood (n=2), inguinal swabs (n=2), 
or undefined human clinical samples (n=17). From 22 patients, multiple (n=63) isolates were received. For 16 patients (10.3 %), 
prolonged carriage of >3 weeks was reported, including nine patients with convalescent, three patients with temporary carriage, 
and four patients with chronic carriage. S. Kentucky cases occurred across all age groups, including infants of 1 to 12 months 
of age (six patients, 4 %). The densely populated districts of Geneva, Zürich, and Basel (13 % of the Swiss population) together 
accounted for 30 % of all patients with S. Kentucky infections and reported residential location (Fig. 1).

Fig. 1. Geographic distribution of human S. Kentucky infections in Switzerland. The map shows the geographic location of 135 deduplicated cases 
(black dots) reported between 2010 and 2020 based on the patients’ postal codes. For 21 cases, the patients’ location was not reported. Overlaying dots 
were scattered to enable clear visualisation. The population density in each district is shown according to the scale bar with data from 2020.

https://github.com/tseemann/cgmlst-dists
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Population structure and epidemiological links of S. Kentucky ST198 isolates from Switzerland
To investigate the diversity of S. Kentucky, we analysed whole-genome sequences of 70 isolates obtained between 2010 and 2020 
from distinct patients. The selected isolates were recovered from stool (n=54), urine (n=8), blood (n=1), or inguinal swab (n=1) 
samples. For six isolates, the sample type was unknown. All isolates were confirmed as S. Kentucky by in silico serotyping. Most 
isolates belonged to ST198 (n=64, 91 %; including one isolate with a truncated purE); other sequence types included ST314 (n=3), 
ST152 (n=1), ST696 (n=1), and ST8979 (n=1).

For the 64 ST198 isolates, pairwise cgSNP distances and the population structure were determined (Fig. 2). Of 62 isolates belonging 
to ST198.2, 61 contained three QRDRs mutations in parC codon 80 (S80I), gyrA codon 83 (S83F), and gyrA codon 87 (D87G, 
D87N, or D87Y) and were thus assigned to the CIPR subclade. Phenotypic ciprofloxacin resistance was shown for all 61 isolates 
(MICs ranged from 1.5 to >32 µg ml−1). Isolate N12-2173, which shared a most recent common ancestor with other ST198.2 
isolates, carried only one QRDR mutation (gyrA S83F) and was intermediately resistant to ciprofloxacin (MIC=0.125 µg ml−1). 
Two isolates belonged to the ST198.1 subclade and did not carry QRDR mutations. However, one of the two carried the PMQR 

Fig. 2. Maximum-likelihood phylogenetic tree of 64 S. Kentucky ST198 isolates from Switzerland. Clusters of isolates separated by  <10 pairwise 
cgSNPs are shaded in grey and annotated (A – F). The isolation year is labelled according to the legend. Isolates associated with recent travel are 
annotated (DZA: Algeria; IDN: Indonesia; KHM: Cambodia; LBY: Libya); for all other isolates, information on the patients’ travel history was unavailable. 
The presence of mutations in quinolone-resistance determining regions (QRDRs; gyrA and parC) and minimum inhibitory concentrations (MIC) of 
ciprofloxacin (CIP) determined using Etest are shown. The presence of acquired genes associated with resistance to azithromycin (mphE, msrE), 
carbapenems (bla

OXA-48
), ciprofloxacin (aac(6′)lb-cr, qnrB, qnrS), or third-generation cephalosporins (bla

CTX-M
, bla

VEB-8
) is annotated. Tips of isolates 

belonging to the CIPR subclade are coloured in blue. The scale bar indicates the number of substitutions per site in a 4.56 Mbp core genome alignment. 
The tree is based on 921 recombination-free variant sites identified by mapping reads to the chromosome of isolate N12-1542. The tree was visualized 
in iTOL v5 [83].
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gene qnrS1 and was intermediately susceptible to ciprofloxacin (MIC=0.19 µg ml−1). The two ST198.1 isolates were collected in 
2010 and 2012, while all isolates collected after 2012 belonged to the CIPR subclade (Fig. 2).

Six potential epidemiological clusters with isolates separated by <10 pairwise cgSNPs were detected using the Snippy pipeline. The 
SNP clusters consisted of two (cluster A, B, C, and D), three (cluster E), and five (cluster F) isolates, respectively, thus comprising 
23 % of all investigated ST198 isolates (Fig. 2). The same isolates formed clusters in a cgSNP distance matrix (cutoff <10 cgSNPs) 
determined using the CFSAN SNP pipeline as an alternative or when applying a distance threshold of ≤5 alleles in a cgMLST 
analysis among ST198 isolates. An exception was cluster C, which consisted of two isolates differing by seven cgMLST alleles 
and seven cgSNPs.

For multiple SNP clusters, epidemiological links were supported by a narrow temporal and geographic distribution of the cases 
(Fig. 2). The bloodstream isolate N10-2326 and stool isolate N10-2329 of cluster A were received within 1 week from different 
patients residing in the same district and differed by one cgSNP. Similarly, the two isolates within cluster B were received within 
1 week from different patients residing in the same region (canton) and differed by two cgSNPs. Isolates from cluster D differed 
by six cgSNPs and were obtained 2 years apart from neighbouring cantons. The largest cluster (F) consisted of five isolates which 
differed by one to nine cgSNPs and were obtained over 5 years (2016–2020) from patients of geographically distant regions in 
Switzerland. Three of the patients had travelled to Indonesia prior to their infection, while for the other two patients travel data 
was unavailable. Cluster C and cluster E contained one travel-associated case each with patients returning from Cambodia and 
Algeria, respectively.

Chromosomal mutations in CIPR subclade isolates associated with varying ciprofloxacin resistance levels
All 61 CIPR subclade isolates harboured three QRDR mutations and were classified as ciprofloxacin-resistant according to CLSI 
guidelines (minimum inhibitory concentration [MIC] ≥1 µg ml−1). Nevertheless, ciprofloxacin resistance levels determined using 
Etest varied considerably with MICs ranging from 1.5 to >32 µg ml−1 (Fig. 2, Table S2). Most isolates (n=52) showed medium-level 
ciprofloxacin resistance (here defined as MIC 3–16 µg ml−1); eight isolates showed high-level (≥24 µg ml−1), and one isolate low-level 
(1.5–2 µg ml−1) ciprofloxacin resistance. High-level and low-level resistance was confirmed using broth microdilution (Table 1). 
To investigate potential underlying mechanisms, genes encoding the porin OmpF, the multi-drug efflux pumps AcrAB-TolC and 
AcrEF-TolC and their regulators were screened for mutations.

In the low-level resistant isolate N14-0851, an in-frame deletion was detected in acrB encoding proton/drug antiporter AcrB 
(Table 1), plausibly impairing ciprofloxacin export. Of the eight isolates with high-level ciprofloxacin resistance, two harboured 
PMQRs, and six harboured mutations at the ramR locus, which encodes a repressor (RamR) of a transcriptional activator (RamA) 
of AcrAB-TolC expression (Table 1). One of the six isolates additionally carried a SNP in the promoter region of the marRAB 
operon, another major regulator of AcrAB-TolC expression [10]. Susceptibility testing in the presence of PAβN, an efflux pump 
inhibitor, decreased MIC values of highly resistant isolates two- to eight-fold but did not show an effect on the low-level resistant 
isolate N14-0851.

Among the isolates with medium-level ciprofloxacin resistance, one (N12-2073) contained a missense mutation in acrB (c.1655>T 
[p.M552K]); no mutations in the marRAB or ramRA loci were found (Table S3). The genes acrEF, acrZ, ompF, and tolC and the 
regulatory genes acrR, acrS, micF, phoQP, rob and sidA were unmodified (absence of non-synonymous mutations or indels) in 
all 61 isolates. Absence (in N14-1311) or IS26-mediated disruption (in N18-2092) of the soxRS locus (transcriptional regulator) 
did not impact ciprofloxacin susceptibility (MIC=8 µg ml−1 each).

Acquired antimicrobial resistance genes in ST198 isolates
The two ST198.1 isolates were susceptible or intermediately susceptible to all tested antibiotics (Table S2). By contrast, most of 
the 61 CIPR subclade isolates were resistant to ampicillin (beta-lactam; 89 %), gentamycin (aminoglycoside; 54 %), streptomycin 
(aminoglycoside; 57 %), and tetracycline (85 %), in addition to ciprofloxacin (100 %) (Table S2). The most frequent acquired 
antimicrobial resistance genes among CIPR subclade isolates were aac(3)-Id (aminoglycoside acetyltransferase; 57 %), aadA7 
(aminoglycoside nucleotidyltransferase; 69 %), blaTEM-1b (beta-lactamase; 82 %), sul1 (sulfonamide resistant dihydropteroate 
synthase; 80 %), and tetA (tetracycline efflux pump; 85 %) (Table S4). These genes as well as the aminoglycoside phosphotransferase 
genes aph(3'')-Ib (strA) and aph(6)-Id (strB), which were detected in 28 % of the CIPR subclade isolates, have previously been linked 
to the SGI1-K variant [59, 60]. The chromosomal resistance gene aac(6')-Iaa (aminoglycoside acetyltransferase) was present in 
all isolates, including those that were susceptible to all tested antibiotics. aac(6')-Iaa is homologous to aac(6′)-Iy, which is cryptic 
and endogenous to Salmonella [61, 62].

Five ST198 isolates were resistant to the third-generation cephalosporin cefotaxime and carried the extended-spectrum beta-
lactamase (ESBLs) genes blaCTX-M-14b (n=3), blaCTX-M-15 (n=1), or blaVEB-8 (n=1; isolate N12-0931) (Fig. 2). N12-0931 additionally 
carried the macrolide resistance genes mphE and msrE and showed phenotypic azithromycin resistance.
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For five isolates of the CIPR subclade, chromosomes and plasmids were completely assembled by combining long- and short-read 
sequencing data. These included three ESBL-producers (N12-0931, N12-1542, N16-1393) and two isolates from patients with 
prolonged S. Kentucky colonization (N12-0259, N18-2092). The isolates harboured six to 14 distinct resistance genes, many of 
which were co-located in variable combinations in AMR gene clusters. The clusters were typically flanked by IS26 elements and 
identified at distinct sites in each isolate: at the chromosomal trkH, soxR, rbsK, or SGI-1 loci or on a large IncHI2/IncHI2A plasmid 
(Table 2). In addition to its AMR gene cluster, N16-1393 harboured a transposition unit comprising blaCTX-M-14b and ISEcp1. This 
unit was integrated chromosomally between the sciK (also termed hcp1; STM0276) and sciL (also termed tae4; STM0277) genes 
(Fig. 3), which are located on the pathogenicity island SPI-6 and encode components of a type VI secretion system (T6SS), an 
important virulence factor during S. enterica infection [63]. N12-0931 harboured blaOXA-48 on a 63 499 bp IncL plasmid but was 
phenotypically susceptible to meropenem, imipenem, and ertapenem (Table S2). blaOXA-48 is known to spread on highly conserved 
plasmids [64]. A search of the NCBI nucleotide collection identified five K. pneumoniae genomes with identical pOXA-48 plasmids 
(63 499 bp length, 100 % query cover and sequence identity; including CP068872.1), which were recovered in the Netherlands. 
Notably, a stay in Northern Africa was documented in a case report for the patient (P5) before isolation of this highly resistant 
strain [65].

S. Kentucky from Switzerland in a global context
To investigate the distribution of the 61 Swiss S. Kentucky ST198 isolates in a global context, pre-assembled genomes from 1789 
additional ST198 isolates (listed in Table S6) available on EnteroBase were included in the analysis. The isolates (here termed 
EnteroBase isolates) originated from 62 countries, with the largest share (47 %) being represented by isolates from the UK (Table 
S6). A phylogenetic tree was constructed based on cgSNPs identified in an assembly-based multi-alignment (Fig. 4). Consistent 
with the population structure obtained for the 61 local isolates (Fig. 2), the global isolates with distinct QRDR mutations in gyrA 

Table 2. Location of antimicrobial resistance genes in complete genome assemblies of five ST198 isolates

Isolate Antimicrobial resistance genes or gene clusters Location

N12-0259 aac (3)-Id, aadA7, qacEΔ1, sul1, tetA Chromosomal: into rbsK∗

blaTEM-1b Chromosomal: upstream of yidY (SGI-1 integration site)

N12-0931 aac(6')-Ib, armA, blaTEM-1b, blaVEB-8, qacEΔ1, msrE, mphE, sul1, tetA Chromosomal: near trkH

blaOXA-48 IncL plasmid (63 kp)

N12-1542 aac (3)-IIa, aac(6')-Ib-cr, ant(3'')-Ia, aph(3'')-Ib, aph(6)-Id, blaCTX-M-15, blaOXA-1, blaTEM-1b, catA1, 
catB3Δ, dfrA14, qnrB1, sul2, tetA

IncHI2/IncHI2A plasmid (341 kb)

blaTEM-1b Chromosomal: upstream of yidY (SGI-1 integration site)

N16-1393 aac (3)-Id, aadA7, aph(3')-Ia, aph(3'')-Ib, aph(6)-Id, qacEΔ1, sul1, tetA Chromosomal: into SGI-1 †

blaCTX-M-14b Chromosomal: between sciK and sciL

N18-2092 aadA2, catA1, dfrA12, qacEΔ1, sul1 Chromosomal: into soxR

blaTEM-1b Chromosomal: downstream of bsmA

*two genes were annotated as rbsK by PGAP; genes were integrated into rbsK located upstream of fucP
†according to the assembly generated with flye; in the assembly generated with Unicycler, the resistance gene cluster was located on a 20 kb circular element

Fig. 3. Genetic context of the bla
CTX-M-14b

 transposition unit in isolate N16-1393 and the corresponding region of an intact SPI-6 T6SS in the chromosome 
of isolate N12-1542. Shaded boxes between sequences indicate homologous regions. Genes were identified with PGAP and T6SS genes annotated 
according to Folkessen et al. [84]. The corresponding locus names in S. Typhimurium LT2 are given in brackets. The figure was generated with Easyfig 
2.1 [54].
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clustered separately (Fig. 4). Isolates encoding GyrA D87G (GAC to GGC; n=371) and D87Y (GAC to TAC; n=664) formed 
monophyletic branches, respectively. Isolates encoding the GyrA D87N mutation (GAC to AAC; n=547) appeared in paraphyletic 
branches which embedded the D87Y-associated branch.

Within the D87G-associated branch, a monophyletic subbranch consisting of 115 isolates was characterized by the presence of 
blaCTX-M-14b chromosomally integrated downstream of sciK (or hcp1) (Fig. 4 and Table S7). Isolates within this branch originated 
from China, the US, and various countries in Europe, and included the three blaCTX-M-14b-positive isolates (N16-1393, N18-2540, 
N18-2752) identified in this study (Fig. S1). The emergence and spread of this sublineage in Europe has been reported before [25].

Most Swiss ST198 isolates were distributed across the ST198-CIPR subclade and generally did not show pronounced clustering 
(Fig. 4). To identify isolates from the EnteroBase collection that genomically matched with isolates sequenced as part of this 
study, sequencing read data of closely related isolates (<10 pairwise cgSNPs difference to any of the local isolates in a 3.15 Mbp 
assembly-based core genome alignment of ST198-CIPR subclade isolates) were accessed and cgSNPs determined using two 
alternative read-mapping based approaches, the Snippy and the CFSAN pipeline.

When applying a strict threshold of <5 pairwise differing cgSNPs to define putative transmission clusters, for 19 of our 61 CIPR 
subclade isolates at least one and up to 52 matching EnteroBase isolates were identified (Table S8). The Snippy and CFSAN 
pipelines yielded almost identical results, identifying overall 177 and 187 matching EnteroBase isolates, respectively (Table S9). 
In some cases, the matching isolates originated from Switzerland but were sequenced as part of other studies. For example, the 
bloodstream isolate N10-2329 and faecal isolate N10-2298 from the above-described cluster A (Fig. 2) differed by one cgSNP 

Fig. 4. Maximum-likelihood phylogenetic tree of 1853 ST198 isolates. Genomes of 64 ST198 isolates from this study and 1789 publicly available 
assemblies from EnteroBase were included. The tree is based on 7615 recombination-free polymorphic sites identified in a multi-alignment-derived 
3.16 Mbp core genome. Mutations in quinolone-resistance determining regions (QRDRs) (ring 1) and the presence of bla

CTX-M-14b
 (ring 3) are indicated. 

Isolates sequenced as part of this study (black bar, ring 2) and Swiss isolates identified among the public genomes (grey bar, ring 2) are labelled. The 
CIPR subclade is shaded in light grey. Two branches discussed in the text (a branch characterized by the presence of bla

CTX-M-14
 and a branch associated 

with travel to Indonesia) are shaded in dark grey. The tree was visualized in iTOL [83].
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from a meat sample isolate (N10-2202). All three were isolated in 2010 in Switzerland, with the meat isolate recovered 5 weeks 
before the two clinical isolates. Similarly, isolate N12-0259 (obtained in 2012 patient P4) matched (one cgSNPs) with another 
isolate (N10-2017) that was recovered in 2010 from animal feed in Switzerland.

The largest number of matches was found for the Swiss isolates from the Indonesia-associated cluster F: a total of 61 EnteroBase 
isolates matched with at least one of the five cluster F isolates (Fig. 5). Pairwise cgSNP distances of the combined 66 isolates 
ranged from 0 to 16 cgSNPs (mean 4.5) and from 0 to 17 cgSNPs (mean 5.4) when the Snippy and CFSAN pipelines were applied, 
respectively. When reported, the additional isolates always represented human isolates (n=56) collected between 2016 and 2020 
in the UK (n=43), Canada (n=7), the US (n=6), or Australia (n=3). Of the 43 cases in the UK, 14 cases were linked with travel 
to Indonesia, five cases with travel to other Asian countries, and four cases with travel in Europe or Africa; one case was not 
associated with travel within 28 days, and for 19 patients the travel history was not documented (Fig. 5). An additional Spanish 
isolate (LSP_314_17) reportedly associated with travel to Bali, Indonesia [23] also fell into this cluster (1–10 pairwise cgSNPs) 
(Fig. 5). Genomic data of this isolate was not available via EnteroBase.

Genomic changes during prolonged colonization of patients: the ramR transcriptional regulator of efflux 
pumps is a mutational hotspot
For six of the 16 patients with prolonged S. Kentucky carriage, we compared the genetic similarity and antimicrobial susceptibility 
of two or three multi-isolates. The cases included convalescent (n=2; 3 to 12 weeks), temporary (n=1; 3 to 12 months), and chronic 
carriage (n=3; >12 months), with isolates obtained 1 month to 3 years apart (Table 3). For one patient (P3), an additional stool 
isolate obtained 1 week after an axilla swab first-isolate was included. Genomic data of the additional same-patient isolates was 
publicly available (P5 and P6; Table S6) or obtained by additional whole-genome sequencing (P1, P2, P3, and P4; Table S1).

All multi-isolates belonged to the ST198 CIPR subclade. The second-isolates differed by 0 to 15 wgSNPs from the respective 
first-isolates, suggesting clonality and persistence in all patients (Table 3). Mutation rates ranged between 2.5 and 9.6 SNPs/year 
(average 5.4 SNPs/year). However, divergent mutations identified in the three multi-isolates from patient P5, including a unique 
deletion in the first-isolate, suggested that the three isolates represent distinct subpopulations evolved from a shared common 
ancestor in P5. This is also supported by an unexpectedly high number of variant sites between the first- and second-isolate, which 
were collected in the same week, as well as by their recovery from distinct body sites (Table 3). Mutation rates in Salmonella were 
previously estimated to 1–5 substitutions per genome and year [66–68].

Genes controlling the export of ciprofloxacin were identified as a mutational hotspot of isolates from patients with temporary 
or chronic carriage: out of a total of 39 unique mutations (SNPs/indels), six (15 %) affected the ramRA locus or the acrAB genes 
and caused clear changes in the ciprofloxacin MIC (Table 3). These mutations included a deletion, a premature stop codon, and 
missense mutations in ramR and a deletion in the ramR – ramA intergenic region. Remarkably, an 11 bp deletion in ramR was 
identified in the first- and second-isolate from patient P6, which were recovered 3 years apart. The first-isolate also contained a 
frameshifted acrB caused by a 1 bp insertion (position 2865), which was no longer found in the second-isolate, indicating the 
presence of distinct in situ evolved subpopulations rather than a reversion of the mutation. Overall, 25 of the 33 detected (dedu-
plicated) SNPs caused amino acid changes in coding regions (n=23) or the gain (n=1) or loss (n=1) of stop codons (Table S10).

Second-isolates from patients P1, P2, P3, P5, and P6 differed in their antimicrobial susceptibility patterns and resistance gene 
profiles from the respective first-isolates. These included the acquisition or loss of phenotypic resistance to aminoglycoside, 
azithromycin, beta-lactams, chloramphenicol, and sulfamethoxazole/trimethoprim. All changes could be explained by the acquisi-
tion or loss of the underlying resistance genes (Table 3).

DISCUSSION
Our analysis of 64 ST198 isolates from Switzerland identified both locally and travel-acquired strains as a cause of human disease. 
Despite a random selection and limited sample size, isolates were often epidemiologically linked as suggested by their narrow 
temporal and geographic distribution and genetic similarity. Two SNP clusters could be linked with meat or animal feed isolates 
from Switzerland, pointing towards contamination of the animal food processing chain as a possible source. Poultry and poultry 
products are assumed to be major vehicles for the spread of S. Kentucky ST198 and clonal transmission within poultry farms 
and processing facilities has been reported, but ST198 has also been identified in other animals and foods [14, 18, 20, 69–71].

The largest cluster of genetically linked ST198 isolates from Swiss patients was associated with recent travel to Indonesia. Screening 
of public global genomic data of ST198 with a strict threshold of <5 pairwise high-quality cgSNPs identified more than 60 addi-
tional isolates that fell into this SNP cluster. The isolates were obtained between 2016 and 2020 in Europe, North America, and 
Australia, and those with available metadata were predominantly associated with travel to Indonesia (Fig. 5). The cluster might 
represent a large and prolonged outbreak of a clone that continuously enters the food chain from an unknown contamination 
source in Indonesia. However, a rapid spread of an endemic clone with various reservoirs and vehicles of infection cannot be 
excluded. Large and prolonged Salmonella outbreaks have been reported before. For instance, an international outbreak of an 
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S. Enteritidis clone between 2015 and 2018 in Europe was attributed to the contamination of egg production farms combined 
with an increased trade of goods [72].

Consistent with previous studies on human S. Kentucky in other countries [13, 18, 20, 73, 74], most Swiss S. Kentucky 
isolates belonged to the ST198-CIPR subclade. By contrast, non-human S. Kentucky isolates commonly belong to the ST198 

Fig. 5. Maximum-likelihood phylogenetic tree of an ST198 SNP cluster associated with travel to Indonesia. Core genome SNP tree for five Swiss 
isolates from cluster F, 61 matching isolates from EnteroBase, a Spanish isolate (LSP_314_17) previously associated with travel to Bali, Indonesia [23], 
and N14-0987 as outgroup. Branch tip colours indicate recent travel destinations of the isolates’ carriers according to the legend. The year and country 
of isolation are labelled. The tree is based on 135 variant sites identified in a 4.8 Mbp core genome alignment generated by mapping reads to the draft 
assembly N20-0541, which is part of this cluster. The tree was visualized in iTOL v5 [83]. AUS: Australia, CH: Switzerland, CAN: Canada, ESP: Spain, IRL: 
Ireland, UK: United Kingdom, USA: United States, na: not available.
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ciprofloxacin-susceptible clade ST198.1 or alternative S. enterica lineages of the Kentucky serovar, including ST314 and ST152 
[11–13]. In phylogenies constructed for local and global ST198 isolates, isolates clustered according to their QRDR mutation in 
(i) a monophyletic branch characterized by GyrA D87G (GAC to GGC), (ii) a monophyletic branch characterized by D87Y (GAC 
to TAC), or (iii) a paraphyletic branch characterized by D87N (GAC to AAC). The D87Y-associated branch was embedded in 
the D87N-associated branch, suggesting that the D87Y-associated lineage may have clonally expanded upon an N87Y (AAC to 
TAC) mutation. The same arrangement of QRDR mutation-specific branches was observed in earlier studies [14, 25]. Long-read 
sequencing of five selected isolates identified resistance gene clusters integrated at various chromosomal positions or on plasmids. 
Only one of those carried a resistance gene cluster in SGI-1, which was identified as a dominant integration site in earlier studies 
[13, 17, 23].

Approximately 10 % of patients with reported S. Kentucky infections were affected by prolonged carriage for at least 3 weeks. All 
six investigated CIPR ST198 second-isolates from prolonged carriage matched the respective first-isolate, suggesting persistence 
rather than re-infection with another S. Kentucky clone. Persistence may result from their demonstrated multi-drug resistance, 
rendering antibiotic treatment ineffective. Alternatively, bacteria may survive antibiotic treatment through the formation of 
biofilms or intracellular persisters, as has been shown for other Salmonella serovars [75–77]. In addition to acquisitions and 
losses of antimicrobial resistance genes, we found evidence of subclonal adaptions among isolates associated with temporary or 
chronic colonization: despite few SNPs between same-patient isolates, variable mutations at the ramRA locus were detected in 
three out of four investigated cases. RamA transcriptionally activates the drug efflux pump AcrAB-TolC, while RamR represses 
ramA transcription by binding to the ramR – ramA intergenic region [10]. In various Salmonella serotypes and lineages, including 
ST198-CIPR, inactivating mutations in ramR or its binding site were linked to the overexpression of AcrAB-TolC and thus 
increased AcrAB-TolC production and ciprofloxacin resistance [78–81]. Here, same-patient isolates with apparent reversed 
deletions or insertions in ramRA or acrAB suggested that ST198 undergoes divergent adaptions on a subclonal level, possibly 
upon selective pressure exerted by antibiotic treatment. Remarkably, one identified persistent strain maintained an 11 bp deletion 
in ramR over more than 3 years, possibly in the form of antibiotic persister cells. A frameshifted acrB in addition to the deletion 
in ramR found in a urine isolate from this patient may have evolved to restore the metabolic flux: although AcrAB-TolC is the 
main efflux pump in Enterobacteriaceae, its function can be replaced by other efflux pumps [82]. Mutated AcrB was identified 
in one additional isolate associated with low-level ciprofloxacin resistance. Overall, eight out of ten cases of high- or low-level 
ciprofloxacin resistance among CIPR subclade isolates could be explained by mutations in ramR or acrB, and two cases by the 
acquisition of PMQR genes.

In conclusion, this study demonstrates that the vast majority of S. Kentucky infections in Switzerland are caused by ST198-CIPR. 
Reported cases are often epidemiologically linked, with transmission clusters associated with strains that circulate locally or at 
travel destinations. Prolonged infections were relatively common and frequently associated with mutations in ramR, facilitating 
bacterial survival in the presence of high ciprofloxacin concentrations. Our results demonstrate the value of whole-genome 
sequencing and global data sharing to trace routes of Salmonella contamination and reduce the burden of salmonellosis.
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