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Abstract

Bacteria withstand antibiotic onslaughts by employing a variety of strategies, one of which is persistence. Persistence occurs 
in a bacterial population where a subpopulation of cells (persisters) survives antibiotic treatment and can regrow in a drug- free 
environment. Persisters may cause the recalcitrance of infectious diseases and can be a stepping stone to antibiotic resistance, 
so understanding persistence mechanisms is critical for therapeutic applications. However, current understanding of persis-
tence is pervaded by paradoxes that stymie research progress, and many aspects of this cellular state remain elusive. In this 
review, we summarize the putative persister mechanisms, including toxin–antitoxin modules, quorum sensing, indole signal-
ling and epigenetics, as well as the reasons behind the inconsistent body of evidence. We highlight present limitations in the 
field and underscore a clinical context that is frequently neglected, in the hope of supporting future researchers in examining 
clinically important persister mechanisms.

IntRoductIon
Less than a century after the first major antibiotic, penicillin, was discovered in 1928 and put into mainstream manufacturing and 
usage in the 1940s, humans are losing the battle against antibiotic resistance: in 2019, it was estimated that there were 4.95 million 
deaths associated with antibiotic resistance, including 1.27 million deaths directly attributable to antibiotic resistance [1]. Alarm-
ingly, serious pathogens that are resistant to virtually all presently available antibiotics highlight the gravity of the dwindling 
antibiotic pipeline [2]. Furthermore, a 2014 review chaired by Jim O’Neill and supported by the UK Government reported that the 
worldwide cost of antibiotic- resistant bacterial infections will be approximately 100 trillion USD over the next 35 years, imposing 
a significant burden on the global healthcare system [3]. Although antibiotic resistance is widely regarded as the primary cause 
of poor treatment outcomes, persistence has been linked to treatment failure for a number of important pathogenic bacteria 
including Pseudomonas aeruginosa, Staphylococcus aureus, Mycobacterium tuberculosis and Escherichia coli [4].

Antibiotic persistence was first named by Joseph Bigger in 1944 when he discovered a subpopulation of Staphylococcus pyogenes 
that survived a penicillin treatment [5]. In contrast to antibiotic- resistant bacteria, persisters cannot multiply but can survive at 
bactericidal antibiotic concentrations. One of the hallmarks of persistence is a biphasic killing curve: the death of the bulk of the 
population is represented by an immediate, swift reduction in bacterial counts, followed by a subsequent phase with considerably 
slower kinetics that represents the slow killing of persisters [6]. When the antibiotics are removed, persisters recover to form a 
sensitive population [7]. The ability to survive bactericidal antibiotic concentrations and resuscitate after the drug is removed 
distinguishes persisters from other states such as ‘tolerance’ or a ‘viable but non- culturable cell (VBNC)’, two concepts sometimes 
misapplied to describe persistence [7].

Persister formation has been identified in most bacterial species, and persistence has been described as a stepping stone to 
antibiotic resistance [4, 8]. Given the prevalence of persisters and their clinical importance, it is critical for researchers to decipher 
the mechanisms behind persister development. To date, various mechanisms, including toxin–antitoxin (TA) modules, quorum 
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sensing and indole signalling, have been linked with persister development [9–11]. Additionally, epigenetics, albeit less researched, 
has been associated with persister formation [12]. The disagreements surrounding currently proposed mechanisms suggest that 
there is unlikely to be a single pathway that explains persister development across all species and conditions. Indeed, a recent 
review on M. tuberculosis concluded that ‘not all antibiotic persisters are created equal’ [13]. In this literature review, we first 
describe the mechanisms of persister formation and identify gaps in previous research. Then, we evaluate the most recent findings 
in epigenetics- mediated persistence and probe the nature of persistence from a stochastic versus a deterministic standpoint. 
Finally, we highlight the importance of contextualizing persister research with clinical outcomes.

tA modulEs: thE mAstER REgulAtoRs?
TA modules are ubiquitous bacterial gene loci composed of a toxin and a cognate antitoxin. These modules are primarily involved 
in physiological processes such as plasmid maintenance, abortive infection and persistence [14]. While plasmid TA modules are 
involved in plasmid stabilization and cell viability, chromosomal TA modules have been associated with persistence and biofilm 
formation [14]. Moreover, TA modules can reach an astoundingly high number in some pathogenic bacteria. For instance, 88 puta-
tive TA systems have been identified in M. tuberculosis [15], contrary to the presence of only five TA modules in Mycobacterium 
smegmatis [16], highlighting the importance of elucidating TA’s role in mediating virulence and pathogenesis.

To date, TA modules have been classified into eight classes based on the type of interaction between the toxin and the antitoxin 
[14]. (i) Type I: the antisense RNA antitoxin counteracts the toxin mRNA. (ii) Type II: the antitoxin protein counteracts the 
toxin protein. (iii) Type III: the RNA toxin counteracts the toxin protein. (iv) Type IV: the antitoxin inhibits the toxin’s activity 
by interacting with the toxin’s target. (v) Type V: the enzyme antitoxin degrades the toxin mRNA. (vi) Type VI: the antitoxin 
acts as a proteolytic adaptor protein that facilitates the protease- mediated degradation of the toxin. (vii) Type VII: the enzyme 
antitoxin enzymatically modifies the toxin via a transient interaction. (viii) Type VIII: the antisense RNA antitoxin counteracts 
the small mRNA toxin.

Notably, both Type I and Type II TA modules have been associated with persister formation [9, 17]. It is commonly assumed 
that TA modules promote persistence via the stringent response (SR) or the SOS response under stress conditions including 
starvation and antibiotic treatments (Fig. 1a) [9, 18], although there is mounting evidence suggesting that TA’s principal function 
may be phage defence [19]. The classifications of toxins associated with persistence based on protein sequence homology and 
their respective cellular targets are illustrated in Fig. 1(b) In this section, we will discuss findings in TA- mediated persistence 
and evaluate their validity.

type II tA modules and persister formation
the hipA family
HipBA is the first TA module to have been associated with persister formation [20], and this correlation was first highlighted after 
a hipA7 (high persistence) allele survived successive ampicillin treatments in E. coli [21]. Notably, hipA7 mutants are observed 
in both pathogenic and commensal E. coli strains and induce a high- persistence phenotype in clinical isolates and bladder cells 
[22]. HipBA upregulation in Klebsiella pneumoniae upon antibiotic challenges hints at a possible correlation between hipBA and 
persistence [23, 24]. Additionally, HipA ectopically expressed via expression plasmids increases persistence [25, 26]. However, 
it is important to note that overexpression experiments of toxins via plasmids have been criticised as inadequate for the evalua-
tion of TA’s role in persistence [9]. It is mainly because overexpression of other proteins unrelated to TA systems also increases 
persistence [27]. Moreover, although a ΔhipA strain was reported to show reduced persistence, the deletion was later determined 

Impact statement

Microbial persisters can cause recurrent infections and pave the way for the subsequent development of antibiotic resistance, 
resulting in a significant clinical burden worldwide. Elucidating the mechanisms behind persistence is therefore critical to 
the development of anti- persister medications. Numerous putative persister mechanisms previously discovered are riddled 
with inconsistencies, owing to unstandardized persister assays and the constrained applicability of each mechanism. There-
fore, it is critical to investigate the validity and relevance of each mechanism. In this review, we summarize major findings in 
persister mechanisms, including toxin–antitoxin (TA) modules, quorum sensing, indole and epigenetics, identifying major gaps 
in our current understanding and critical factors that have been less well- addressed in previous studies. Additionally, a table 
summarizing the persister assay conditions utilized by key TA- mediated persistence studies was established with the goal of 
improving the uniformity and reproducibility of persister assays across different laboratories. Finally, we underline the neces-
sity of studying persister formation with clinical contexts in mind, intending to direct future researchers to investigate persister 
mechanisms in more clinically applicable ways so that they may facilitate future breakthroughs in the field.



3

Shi and Zarkan, Microbiology 2022;168:001266

Fig. 1. Responses (a) and classification (b) of TA- mediated persistence. (a) The stringent response (SR) and the SOS response. In the SR, stalled 
ribosomes in the absence of amino acids stimulate RelA [195], while other starvation signals (e.g. phosphate, iron, fatty acid) stimulate SpoT [196], 
leading to the production of the alarmone (p)ppGpp,  reprogramming many metabolic processes [195]. It has been proposed that an increase in 
(p)ppGpp production inhibits exopolyphosphatase (PPX), causing polyphosphate (polyP) accumulation, which activates proteases such as Lon that 
preferentially degrades antitoxins, thus releasing the toxins [14]. In the SOS response, DNA damage, which can be caused by antibiotics such as 
fluoroquinolones, results in the mass of ssDNA activating RecA, promoting LexA self- cleavage [195], and subsequently activating the SOS genes, 
which induces TA modules such as the tisB/istR Type I locus [14]. Toxin activation and accumulation via SR or SOS are thought to result in decreased 
metabolic activity, eventually leading to persistence. (b) Classification of TA- mediated persistence. Based on sequence homology, Type II toxins involved 
in persister formation are classified into several families, including the HipA, RelE/ParE, CcB/MazF and VapC families [197], while TisB and HokB are 
two of the best- characterized Type I toxins. Toxins inhibit metabolic processes in a variety of ways. Some impair translation via the inhibition of tRNA 
synthetase (magenta), tRNA (violet), ribosome- dependent RNA cleavage (red) and ribosome- independent RNA cleavage (blue), while some cause 
membrane depolarization (yellow) and inhibition of DNA replication (green) [17, 198–203]. Recently, many new toxins related to persistence have been 
identified, including TacT, HicA, SmuT, PA14_51010, BCAM0271, BPSS1321 and BPSS1494 [57, 61, 62, 198, 204]. Their respective cellular targets are 
shown in the figure, while some remain elusive and hence are indicated by a question mark.

to extend into a critical dif region important for chromosome partitioning [28, 29]. Notably, a precise hipA deletion does not 
exhibit the phenotype observed in the unclean deletion strain [29]. Furthermore, hipA7’s high persistence was reported to depend 
on inoculum age and antibiotics [30]. Collectively, these studies suggest that hipBA is unlikely to be the universal key regulator 
of persistence. Additionally, hipBA, but not relBE, vapBC or mazEF, was suggested to rely on SR, albeit the conclusion cannot be 
generalized to antibiotics other than ampicillin and ciprofloxacin [31, 32]. Notably, in Caulobacter crescentus, although the SR 
regulator SpoT is required for HipA- mediated persistence in the stationary phase, persister cells can arise in the absence of hipBA 
or SpoT [33], highlighting the possibility of different persister- producing routes in C. cresentus.

the RelE/ParE family
RelBE
RelBE was demonstrated to be essential for M. tuberculosis persistence and upregulated in K. pneumoniae and S. aureus upon 
antibiotic challenge [14, 23, 24, 34, 35]. In E. coli, RelE overexpression enhances persistence towards all the antibiotics tested 
except mitomycin C [28]. RelBE’s effect on persister formation might be independent of SR because RelE- induced persistence 
was not significantly impaired by relA deletion [32]. However, ΔrelBE (as well as ΔmazEF and ΔdinJ- yafQ) was suggested to not 
affect persistence in E. coli [28]. This incongruence might owe to a difference in the bacterial growth phase (stationary phase 
for ΔrelBE but exponential phase for overexpression strains), antibiotics and concentration, and the redundancy of TA systems 
[28, 32]. Similarly, Δ3TA (mazEF and two relBE homologues) does not affect persistence in S. aureus [36].

ParDE
Enterobacteriaceae ParE overexpression in E. coli significantly enhances persistence, albeit its persister- forming role in the natural 
host remains uncertain [37].
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MqsRA
MqsR overexpression induces persistence probably without (p)ppGpp, and while ΔmqsR or ΔmqsRA shows reduced persistence, 
ΔmqsR’s phenotype varies with inoculum age [30, 32, 33]. Interestingly, ΔmqsR’s phenotype was observed in E. coli K12 BW25113 
but not MG1655 [38, 39], suggesting the potential impact of genotype on persistence. Notably, the study on BW25113 concentrated 
the culture before persister assays, which might have impacted the bacteria’s growth condition given that the inoculum’s growth 
condition impacts persistence [30, 38]. Intriguingly, it has been indicated recently that MqsA is transcriptionally uncoupled from 
MqsR, allowing for a steady MqsA production, and no fluctuation in MqsA expression was observed under stress, questioning 
MqsRA’s role in the stress response [40].

YefM-yoeB
ΔyoeB and ΔyefM- yoeB show reduced persistence in S. aureus and Edwardsiella piscicida, and it was observed that polyP and 
(p)ppGpp do not affect YefM degradation during serine starvation, yet this conclusion cannot be generalized to other situations 
[41–43].

DinJ-yafQ
In planktonic culture, YafQ overexpression increases persistence without (p)ppGpp, but ΔyafQ does not show significantly reduced 
persistence, and ΔdinJ shows only a slightly larger persister fraction [44–46]. In these studies, different antibiotics, growth phases 
and genotypes were chosen [44–46], which might have caused the incongruence. In biofilms, ΔyafQ displays reduced persistence, 
and YafQ overexpression induces persistence, although these results were only observed when treated with certain antibiotics 
[45]. However, Δ4TA (symER, tisAB- istR, dinJ- yafQ, yafNO) does not produce a different persistence profile in starved biofilms 
[47]; still, this conclusion might not be extrapolated to stress- free biofilms.

ShpAB
Hyper- persistent shp mutants isolated from Salmonella enterica serovar Typhimurium were indicated to be Lon- dependent but 
RelA- independent [48]. Moreover, an shpAB knockout mutant displays a reduced rate of persister formation in a murine model 
of typhoid fever [49]. In contrast, a deletion mutant deficient in three TA modules, including shpAB, had no effect on virulence 
and persistence in a murine model [50].

the ccdB/mazF family
MazEF
MazF upregulation increases persistence, but the authors pretreated the bacteria overnight pre- culture with ampicillin, which 
might have induced persisters prior to the persister assay, and hence the finding should be evaluated with prudence [51]. Moreover, 
it has been indicated that MazEF is independent of (p)ppGpp [32, 44]. In S. aureus, ΔmazF represses persistence in biofilms 
and some planktonic cultures, and mazEF is upregulated in both S. aureus and K. pneumoniae upon antibiotic treatments 
[24, 34, 35, 52].

PemIK
PemIK was characterized in the K. pneumoniae pCA24N plasmid essential for persister formation [53]. However, multiple genes 
other than relBE are encoded by pCA24N, so this study fails to establish a direct correlation between pemIK and persistence [53].

the Vapc family
VapB mutations were selected after successive ampicillin treatments, and vapBC upregulation has been observed in K. pneumoniae 
upon antibiotic challenges [8, 23, 24]. Notably, vapBC is the most abundant TA module in M. tuberculosis, and ΔvapC12 shows 
reduced cholesterol- mediated persistence required for survival inside macrophages [54]. Additionally, VapC21 overexpression 
increases persistence in a foreign host lacking vapBC21, which is counteracted by the cognate antitoxin VapB21 and the non- 
cognate VapB32 [54]. However, ΔvapC21 showed a negligible effect on M. tuberculosis persistence [54]. Hence, a compelling 
correlation between vapBC21 and persistence is absent. Still, VapBC21’s capacity to interact with a non- cognate antitoxin warrants 
more research into the complex cross- talk between TA homologues.

other type II tA modules and their correlation with persister formation
Other Type II toxins include TacT, HicA, PA14_51010, SmuT, BCAM0271, BPSS1321 and BPSS1494. TacT overexpression 
increases persistence, and ΔhicAB shows reduced persistence [55, 56]. Although most Type II TA modules target key steps in 
translation or DNA replication, PA14_51010 overexpression induces persistence via lowering the intracellular NAD+ concentra-
tion [57]. Moreover, a functional tripartite TA system smuATR module has been shown to mediate persistence via membrane 
permeabilization [58]. Due to the diversity of the TA modules, toxin identification might sometimes be confounded. For instance, 
PasT, long considered to be a persistence- associated Type II toxin [59], was recently identified as a mitochondrial protein homo-
logue [60]. Therefore, although BCAM0271, BPSS1321 and BPSS1494 were identified as toxins via bioinformatics and have been 
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linked to persistence [61, 62], in silico characterization of toxins should be interpreted cautiously to authenticate the toxins in 
the first place.

type I tA modules and persister formation
Two Type I TA modules, hokB/sokB and tisB/istR, have been implicated in persister formation [17, 63]. It has been indicated that 
the conserved GTPase Obg, implicated in ribosome biogenesis, DNA replication and stress responses, mediates persistence via 
activating the transcription of the toxin hokB in a (p)ppGpp- dependent but polyP- independent way [63]. In the case of tisB/istR, a 
tisB/istR mutant ∆1–41 ∆istR (∆∆; deletion of the inhibitory tisB 5′ untranslated region (UTR) structure and the antitoxin- coding 
istR- 1) has been characterized as a high- persistence mutant, which, unlike the WT, was later proved to be uncoupled from SOS 
[64, 65]. Notably, strong TisB production by ∆∆ has been suggested to inhibit the SOS response, indicating that the SOS response 
is non- essential for ∆∆ [66]. Surprisingly, compared with the WT, ∆∆’s persister level was ~15- fold lower towards mitomycin 
C [66], suggesting that high- persistence phenotypes are sometimes conditional. Based on this discovery, it is reasonable to 
postulate that bacteria may hedge their bets by possessing many genotypes for generating persisters under different environments. 
Recently, a new model where TisB functions as a persistence- stabilizing factor that plays a role at later time points were proposed, 
based on the critical observations of a strong delay in TisB- related events, such as the decline in cellular ATP level after 4–6 h of 
ciprofloxacin treatment [67]. This shift in perspective may drive future studies toward persistence- stabilizing factors rather than 
rapid persistence inducers, offering insight into additional functions of TA modules in mediating persistence. Still, since tisB/
istR is conserved in pathogenic E. coli and Enterobacteriaceae [68], tisB/istR should be studied in species other than the E. coli 
lab strain to get further clinical insights.

countERARgumEnts REgARdIng tA’s kEy RolE In PERsIstEncE
It has long been assumed that TA modules mediate persistence via the classical SR pathway (Figs 1a and 2). However, there is 
accumulating evidence that TAs might not be a universal regulator of persistence. It has been suggested that simultaneous deletion 
of multiple TAs in E. coli and Salmonella enterica serovar Typhimurium shows no disadvantage in persistence [43, 69–71]. TA 
redundancy aside, many other studies cast doubts on the TA- mediated persistence paradigm, questioning essentially every step 
of this pathway (Fig. 2).

First, (p)ppGpp’s function in the pathway is unclear. PolyP production was proposed to depend on the transcription factor DksA 
instead of (p)ppGpp and, notably, previous studies reporting (p)ppGpp- dependent polyP production utilized ∆relA∆spoT strains 
containing unsuspected stringent mutations of RNA polymerase that explain the decreased polyP accumulation [72]. Similarly, 
polyP production does not depend on (p)ppGpp in C. crecentus or P. aeruginosa, and persister formation is independent of (p)
ppGpp in both Salmonella enterica serovar Typhimurium and M. smegmatis [71, 73–75].

Second, the roles of PPX, PPK, and polyP remain ambiguous. ∆ppkx does not affect persistence [76]. Moreover, there is no 
observed correlation between ppk gene expression and polyP production, though a reporter fusion construct was employed, which 
might not reflect the native ppk transcript [72]. Additionally, polyP appeared to inhibit Lon in vitro instead of activating it [77].

Third, it is unclear whether TA upregulation and Lon- mediated degradation of antitoxin lead to toxin accumulation. A ∆lon 
mutant does not show reduced ampicillin persistence, and the decreased ciprofloxacin persistence of ∆lon results from unchecked 
SulA production instead of hindered antitoxin degradation [44, 78]. Moreover, there is mounting evidence suggesting that toxins 
are not liberated by preferential antitoxin degradation, since not all antitoxins are unstructured and hence are probably not 
favoured by proteases [79]. Additionally, the high affinity between toxin and antitoxin renders antitoxin degradation unlikely, 
while most research studied unbound toxins and misattributed the lability to bound toxins [79]. Furthermore, toxins might be 
activated by de novo synthesis via post- transcriptional approaches instead of being liberated, such as the preferential degrada-
tion of the antitoxin mRNA in the GhoST module [80]. In line with this assumption, it was recently reported that synonymous 
mutations in the ccdA antitoxin gene affect bacterial growth, which is caused by the change in the relative translation efficiencies 
of the antitoxin CcdA and the toxin CcdB, leading to a change in the toxin:antitoxin ratio but not toxin/antitoxin binding [81]. 
Similarly, TA upregulation during stress does not cause toxin liberation; in fact, antitoxins are never depleted and are much more 
abundant than toxins [70]. Collectively, these findings indicate that the classical paradigm of antitoxin degradation by Lon is not 
well established, and TA upregulation is not equivalent to toxin activation.

tA systEms: Why so mAny? WhAt FoR?
Given the ambiguity surrounding TA’s involvement in persistence, the TA field should presumably answer the question proposed 
in 2010 from an evolutionary perspective: TA systems, why so many? What for? [82].

There is accumulating data suggesting that TA modules have evolved as a phage defence system, a 26- year paradigm initially 
discovered in a plasmid hok/sok module and recently reviewed [83, 84]. To begin with, the phage defence phenomenon has 
been observed in at least four types of TA in a variety of ways, including abortive infection and CRISPR- Cas safeguard [85–88]. 
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Fig. 2. Controversies over the TA- mediated persistence paradigm. The classical model unifying (p)ppGpp, polyP, Lon, TA and persistence is illustrated 
(left). Counterarguments opposed to the model are listed (right). Green question marks indicate controversial steps in the pathway (left).

Notably, the phage defence role of the MqsRA system has recently been established [89]. Moreover, TA has been suggested to 
be one of the ancestors of the CRISPR- Cas system [90]. Additionally, TA has left behind a wealth of co- evolutionary footprints 
documenting the phage–host arms race. First, many phages have evolved antitoxins as a defence mechanism [91–93]. Notably, 
it was proposed that the T7 phage produces a Lon protease inhibitor that prevents bacterial toxin liberation [94], but given the 
controversies over Lon- mediated toxin activation, this phage defence route should be further examined. Second, a TA homologue 
exists in prophage as a modulator of phage production [95]. Third, an intriguing evolutionary trade- off was observed in the 
phage- defence toxIN: incomplete blockage of host transcription allows for phage propagation but activates the toxIN phage 
defence [96]. Additionally, an evolutionary experiment indicated that T4 phage can rapidly evolve to inhibit the ToxN toxin by 
acquiring segmental amplifications of the inhibitor gene [97]. Fourth, it has been indicated recently that phages benefit from 
an orphan toxin MazF in a phage- inducible chromosomal island to compete with other phages for the same bacterial host [98].

In light of the various evolutionary traces, it is tempting to speculate that TA’s core purpose is phage defence rather than persis-
tence. As a result, while the two functions are not incompatible, persistence may merely be a by- product of this phage defence 
mechanism, which explains why certain TA mutations have been identified as putative persistence mutations through evolutionary 
experiments but are unlikely to be key regulators of persistence.
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lImItAtIons oF REsEARch on tA-mEdIAtEd PERsIstEncE
Overexpression limitations, phage- contaminated cell lines and unstandardized persister assay parameters have greatly complicated 
TA research. Furthermore, although some studies report a good transcriptome–proteome correlation [99], a number of studies 
have proved it to be poor in multiple species [100–102], and hence studies probing the transcription of TA modules may not 
effectively represent the change in toxin or antitoxin concentration. Moreover, deletion studies are also hard to convincingly 
correlate TA with persistence due to redundancy and unclean deletions created inadvertently, often only causing a minor change 
in persistence. Furthermore, because most studies have been done in vitro on E. coli lab strains, more research on other bacterial 
species and animal models should be conducted to generalize TA’s involvement in persistence to a range of conditions. Future 
research on TA should perhaps primarily work on persister assay standardization; here, a table documenting persister assay 
parameters of major studies on TA- mediated persistence is presented (Table 1). It is worth noting that some articles included 
in the table used the terms ‘antibiotic tolerance’ and ‘antibiotic persistence’ interchangeably but actually researched persistence 
rather than tolerance, an ambiguity resolved in a consensus statement released in 2019 [7].

sIgnAllIng molEculEs (Qs/IndolE) mEdIAtE PERsIstER FoRmAtIon
Quorum sensing (QS) is a synchronized population- wide response that was first reported in the 1990s when it was observed 
that the Gram- negative Vibrio fischeri, later reclassified as Aliivibrio fischeri [103], bioluminates exclusively upon symbiosis with 
marine creatures but not in a planktonic condition [104]. It was then discovered that the signal 3- oxo- C6- homoserine lactone 
(3- oxo- C6- HSL) generated by the luxR/luxI locus mediates bioluminescence in V. fischeri [104]. This finding was followed by 
subsequent discoveries of LuxR/LuxI systems in more than 70 Gram- negative species [105]. In P. aeruginosa, the two LuxR/LuxI 
systems (Las and Rhl) are intimately connected to the Pseudomonas quinolone signal (PQS) system [106], which regulates the 
generation of virulence factors including pyocyanin (PCN; also denoted as PYO in some papers) [107]. Notably, the three QS 
systems (Rhl, Las, PQS) in P. aeruginosa are interconnected and organized in a complicated network, though the advantage of 
such an organizational structure is not entirely clear [106].

In Gram- positive bacteria, QS via competence stimulating peptide (CSP) is associated with natural competence, the physiological 
state that enables bacteria to absorb exogenous (‘naked’) DNAs and integrate them into the genome [108]. This phenomenon was 
discovered in the Gram- positive Streptococcus pneumoniae in the 1920s [109], yet the precise nature of the secreted competence 
factor and its mechanism remained enigmatic until the mid- 1990s [110]. After the identification of the CSP, the CSP- mediated 
QS circuitry has been researched extensively in Streptococcus pneumoniae [108]. Additionally, Streptococcus pneumoniae not only 
utilizes CSP to mediate competence but also virulence factor production and biofilm formation [111].

At the beginning of the 21st century, the expanding discoveries of putative QS molecules were followed by difficulties in distin-
guishing actual QS molecules from leaky metabolites [112]. One of the controversial signals is indole, an organic compound found 
in microbiota in a variety of habitats [113]. In an attempt to clarify such ambiguities, Winser et al. developed four qualifying criteria 
for QS molecules [112]: a QS molecule must (i) be produced at a specific stage, (ii) accumulate externally and be recognized by 
a receptor, (iii) cause a concerted response after its accumulation reaches a key threshold, and (iv) the response should extend 
beyond detoxification. Although indole was first supposed to be a QS signal, it was subsequently deemed to violate the key QS 
criteria due to challenges in establishing its cellular receptor and its distinctive pulse signalling observed in E. coli [11].

QS systems and indole have been linked with persister formation [10]. The LuxR/LuxI systems that produce acyl- homoserine 
lactone (AHL), the PQS precursor 2- amino- acetophenone (2- AA) and PCN have been implicated in persister formation in P. 
aeruginosa [10]. Furthermore, CSP has been indicated to regulate Streptococcus mutans persister formation [114], and indole- 
mediated persistence is widely investigated in E. coli and other species [11]. In this section, we will introduce the findings in QS 
and indole- mediated persistence, and the mechanisms proposed thus far are illustrated in Fig. 3.

the P. aeruginosa Qs network mediates persister formation
In the P. aeruginosa QS network, PCN, HSL and 2- AA are implicated in persister formation. PCN is an oxidative phenazine 
compound speculated to be a terminal signalling factor in P. aeruginosa that promotes persister formation [115, 116]. Moreover, 
oxidative stress has been identified as a major contributor to PCN cytoxicity [117], and paraquat also induces persister formation 
in P. aeruginosa [116]. However, the SoxR protein, thought to be activated by PCN and implicated in the oxidative stress response 
[115], was not required for PCN- mediated persister formation [116]. Furthermore, H2O2 and phenazine- 1- carboxylic acid (PCA), 
two oxidative agents, do not increase persister formation [116], indicating that PCN- mediated persister development may rely on 
pathways other than the key oxidative stress regulators such as SoxR and OxyR. Instead, it may rely on a PCN- specific response. 
It has been indicated that in addition to oxidative stress responses, PCN substantially induces efflux systems [118], and given 
that enhanced efflux activities are associated with persister formation in E. coli [119], the relationship between efflux systems and 
PCN- mediated persister production might be worthy of investigation. Still, it is important to note that PCN (2 mM) was added 
exogenously in this study [116], and a low level of PCN (0.2 mM) was not able to induce persister formation [116]. Moreover, 
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Fig. 3. Quorum sensing (QS) and indole mediate persister formation. (a) The Pseudomonas quinolone signal (PQS) and HSL systems in Pseudomonas 
aeruginosa. The P. aeruginosa QS systems include the PQS system and two HSL- producing systems, LasI/LasR and RhII/RhIR. PQS biosynthesis is 
indicated in the blue box, and PQS is recognized by the PqsR receptor [206]. AA, anthranilic acid; 2- ABA, 2- amino benzoyl acetate; HHQ, 2- heptyl- 4- 
(1H)- quinolone; 2- AA, 2- amino- acetophenone. In the HSL system paradigm (red box), a LuxI protein homologue synthesizes the HSL signal, and a LuxR 
protein homologue binds the HSL signal as a receptor. LasI/LasR and RhII/RhIR produce and recognize N-3- oxododecanoyl homoserine lactone (3- oxo- 
C12- HSL) and N- butanoyl- l- homoserine lactone (C4- HSL), respectively [207], and a QscR orphan receptor devoid of a corresponding LasI homologue 
recognizes several signals including 3- oxo- C12- HSL [208]. Additionally, PqsE is essential for RhlR- dependent QS [209], and the small RNA ReaL is also 
embedded in the network [210]. The interactions within the P. aeruginosa QS system are indicated in red arrows [115, 209–213]. In this network, 3- oxo- 
C12- HSL, 2- AA and PCN have been suggested to promote persister formation in P. aeruginosa. (b) The CSP- ComDE (blue) and ComRS (red) system in 
Streptococcus mutans. In the CSP- ComDE system, CSP is produced, exported, modified and sensed, eventually upregulating CipB production; in the 
ComRS system, the double- tryptophan- containing signal peptide XIP is produced, sensed outside the cell and imported, eventually inducing the σ 
factor SigX. SigX activation leads to three divergent outcomes, persister formation, competence or programmed cell death (PCD) [114]. CSP- mediated 
persistence has been associated with the ComRS system, the tripartite TA module smuATR and the LexA regulator in the SOS response [58, 214]. 
Recently, it has been suggested that the signalling peptide Pep299 participates in CSP- mediated persistence via activating a Type II toxin gene tox40 
[130]. (c) Indole and QS regulators in E. coli. Indole is synthesized by tryptophanase (TnaA) from tryptophan (Trp). Although indole has been linked to 
a range of physiological changes, many key questions remain unanswered, including the authenticity of its putative cellular receptor (the LuxR solo 
SdiA) and membrane transporters (AcrEF and Mtr), as well as whether it triggers or inhibits persister development [70]. Considering that indole elicits 
a response in three envelope stress responses (Psp, BaeSR, CpxRA) and its high concentration in the cell membrane (50–100 mM), indole’s main target 
may be the cell membrane [11]. Interestingly, cellular pH both regulates and is influenced by indole synthesis, and regulation of cellular pH by indole 
production has been indicated to be a distinctive trait of E. coli persisters [139–141]. Notably, indole leads to persister formation via at least three routes 
(OxyR and Psp, yafQ, and DosP) [135, 144, 146]. Additionally, two QS regulators, qseB and lrsF, are associated with E. coli persister formation [215]. 
(d) Signalling molecules might mediate persister formation in bacterial co- culture. In bacterial co- culture, bacteria might utilize signalling molecules 
(e.g. indole, 2- AA, PCN) to help their allies persist and colonize the host.

only PCN added to log- phase cells promoted persister formation [116], whereas PCN is usually produced during stationary phase 
[115], questioning whether PCN alone can induce persister formation under physiological conditions.

Besides PCN, 3- oxo- C12- HSL also significantly increases persister formation in P. aeruginosa [116]. Interestingly, while a low 
level of PCN (0.2 mM) alone does not induce persister formation, PCN increases persister numbers when accompanied by a low 
concentration of 3- oxo- C12- HSL [116], suggesting that persister formation might be mediated by 3- oxo- C12- HSL instead of 
PCN at this concentration. Moreover, 2- AA, a precursor of PQS, promotes persister formation by downregulating the transcrip-
tion of genes involved in the translational capacity [120], an effect similar to Type II TA modules, suggesting that translation 
inhibition may be a general mechanism of persister formation. Corroborating this finding, 2- AA production inhibition resulting 
from PqsR antagonism reduces persister numbers, and 2- AA allows P. aeruginosa to persist in vivo [121]. Notably, three studies 
investigating the effect of the QS inhibitor BF8 on persister development were quoted to show the impact of QS inhibition on 
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persister formation [10]. However, these studies revealed that although BF8 inhibits persister formation, such an effect is not 
solely due to QS inhibition, and BF8 at least might have other cellular targets [122–124].

Given the intricate interplay of P. aeruginosa QS systems and the participation of at least three signals in persister generation, 
future research should focus on determining how several signals might work synergistically to facilitate persister formation in this 
QS network. Moreover, a link has been made between (p)ppGpp and the QS network in P. aeruginosa based on the observation 
that (p)ppGpp modulates the AHL- producing Rhl and Las system as well as the PQS system [125]. Considering that (p)ppGpp 
has long been implicated in persister formation [126], (p)ppGpp’s involvement in QS- mediated persistence in P. aeruginosa may 
warrant additional research.

Streptococcus mutans competence stimulating peptide (csP) mediates persister formation
CSP is considered an ‘alarmone’ because it stimulates competence [114], a stress response promoting DNA repair, and activates 
stress response genes such as the bacterial heat shock regulons. Therefore, it should not be surprising that CSP also mediates 
antibiotic persistence, which is a strategy that helps to combat antibiotic stress. In fact, three possible outcomes have been 
proposed for CSP signalling in Streptococcus mutans: competence, programmed cell death (PCD) and persister formation [114]. 
A complete signalling pathway encompassing ComDE, ComRS and the σ factor SigX is required for CSP- mediated persistence 
[127]. Moreover, a non- canonical SOS pathway involving LexA and LexA- regulated genes (csn2, scrA and SMU.984) was shown 
to affect CSP- mediated persister formation towards different antibiotics including some that do not cause DNA damage [127], 
hinting that CSP might mediate persistence to a variety of antibiotic actions as a general ‘alarmone’. Interestingly, the tripartite 
TA module smuATR was shown to be essential for CSP- mediated persister formation by permeabilizing the cell membrane [58]. 
However, 2 µM CSP was added to the culture [58], whereas 1 µM has been indicated as the physiological condition [128], and 
hence it is unknown whether this pathway also applies to this physiological concentration. Additionally, it was speculated that 
CipB could insert into the cell membrane and form pores, decreasing the proton motive force and consequently the cellular ATP 
level, causing persister formation similar to the action of Type I TA modules [129]. Recently, a DNA damage- inducible gene pep299 
specifically activated in the persister population was suggested to code for an intraspecies signalling peptide Pep299. Moreover, 
Pep299 is required for CSP- mediated persistence in Streptococcus mutans via activation of the tox40 gene (a Type II toxin gene) 
in the CSP- induced persister population [130].

These data suggest that CSP can lead to persister production via several routes, but no model unifies all of these processes. 
Moreover, how ComDE and ComRS are connected on a molecular level remains unknown and is greatly complicated by the 
medium- dependent response: the XIP response can be observed in a chemically defined medium rich in amino acids and lacking 
peptides but is hardly observed in peptide- rich media containing peptone, presumably because XIP will have to compete with these 
peptides to enter the cell via the Opp peptide transporter [131]. Therefore, future studies should select media with appropriate 
compositions. Notably, the Streptococcus pneumoniae genome encodes a blpRH locus paralogous to comCDE, which regulates 
bacteriocin production, and Streptococcus mutans comCDE shares a higher degree of homology to the blp locus than the comCDE 
locus in Streptococcus pneumoniae [131]. Moreover, the ComCDE system in Streptococcus pneumoniae has been speculated to 
participate in antibiotic stress tolerance [132]. Collectively, these findings imply a possible correlation between Streptococcus 
pneumoniae blpRH and persistence awaiting further confirmation.

Indole mediates persister formation in E. coli and other species
Indole is an intra- species, inter- species and inter- kingdom aromatic signalling compound produced by over 85 bacterial species 
[133]. It is involved in various biological processes including spore formation, drug resistance, virulence, plasmid stability and 
biofilm formation [11, 133].

Two modes of indole signalling have been characterized: ‘persistent’ and ‘pulse’, and the latter denotes the transient yet strong 
rise (~60 mM) in intracellular indole during the transition to stationary phase [134]. Adding an extra layer of complexity, two 
distinctive functions of indole have been proposed: stress response and stress insurance [11]. As stress insurance, indole increases 
persistence via OxyR and the phage shock response pathway to ‘inoculate’ bacteria from antibiotics, and this increase was 
supported by a later study [135, 136]. Indole pulse signalling has been shown to generate E. coli quinolone persisters by targeting 
DNA gyrase, and indole production was not increased in response to the antibiotic stress [137]. In Pseudomonas fluorescens, 
exogenous indole that could come from the plant rhizosphere enhances persister formation via modulating efflux systems and 
protect this rhizobacterium from multiple antibiotics [138]. As a proton ionophore, indole inhibits E. coli cell division at a high 
concentration (3–5 mM) and regulates E. coli pH via pulse signalling [139, 140]. Notably, it has been demonstrated that indole 
production is essential for maintaining a distinctive lower pH in E. coli persisters before ampicillin treatment [141], suggesting 
that indole’s regulation of pH level might also account for a form of stress insurance.

Indole can also be part of the central stress response involving RpoS. Notably, depending on the experimental setup, RpoS dele-
tion can either increase or inhibit persistence [142, 143]. Two RpoS- regulated mechanisms by which indole decreases persister 
formation have been proposed: (i) the Type II toxin YafQ inhibits RpoS, while RpoS activates TnaA – hence, YafQ decreases indole 
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production, thus increasing persistence [144]; and (ii) direct oxygen sensing phosphodiesterase (DosP), which has been suggested 
to be upregulated by RpoS [145], degrades cAMP, which lowers indole levels and increases persistence [146]. Notably, the first 
study utilized overexpression studies to establish YafQ’s role in persister formation, and hence the result should be interpreted 
cautiously [144]. In Vibrio cholerae, indole is part of the stress response: cellular indole level rises in response to a sub- inhibitory 
level of aminoglycoside, activating RaiA- mediated persistence [147]. Notably, halogenated indole derivatives could potently 
inhibit E. coli and Staphylococcus aureus persisters [136].

Collectively, these findings suggest that indole may either operate as insurance that safeguards bacteria from future stress by 
boosting persistence, or it can be part of a stress response. Indole promotes persistence in certain circumstances but inhibits 
persistence in others. These seemingly contradictory findings illustrate the enigmatic activity of indole, which changes substan-
tially depending on the species under investigation and relevant experimental conditions.

Qs mediates persister formation in other bacteria
QS- regulated phenol- soluble modulins decrease persister formation in Staphylococcus aureus [148]. Moreover, the Legionella QS 
(Lqs) system controls persistence in Legionella pneumophila biofilms [149]. These findings suggest the possibility that signalling 
molecules other than AHL, CSP and indole might mediate persister development, highlighting the need to verify the role of QS 
in various species.

co-existing in a community: signals as shields and swords in microbial warfare
Considering that QS molecules and indole regulate persistence and influence community- level behaviours, it is tempting to 
speculate that in bacterial co- cultures, these molecules might participate in microbial warfare via mediating persistence in an 
interspecies manner.

This is especially true for indole, which only controls a few genes of E. coli but is considered to greatly influence its neighbours 
as a ‘manipulative’ interspecies and interkingdom bacterial signal [150, 151]. Remarkably, it has been suggested that the gut 
pathogen Clostridium difficile manipulates E. coli and other indole- producing bacteria to produce a high concentration of indole 
that can be used to inhibit the growth of most gut- protective bacteria [152]. This might alter the colonization resistance in 
the gut microbiome, thus allowing C. difficile to persist [152]. Additionally, indole produced by E. coli promotes Salmonella 
enterica serovar Typhimurium persister formation mainly via the oxidative stress response [153]. However, E. coli competes 
with P. aeruginosa by upregulating indole production, thus inhibiting PCN production and AHL- regulated virulence factors in 
P. aeruginosa [154]. Considering that PCN and AHL mediate persistence in P. aeruginosa, these hostile actions of E. coli indole 
might decrease P. aeruginosa’s capacity to form persisters and hence diminish its advantage, although this is yet to be confirmed. 
Moreover, indole’s quorum quenching (QQ) ability, such as interfering with QS regulator folding and upregulating QQ enzymes, 
highlights its potential in obstructing competitors’ QS systems and decreasing persistence [155, 156].

Similarly, while PCN has antimicrobial effects on species including Staphylococcus aureus, Staphylococcus epidermidis and Bacillus 
subtilis [157], it facilitates persister formation in Acinetobacter baumannii [158]. Moreover, 2- AA produced by P. aeruginosa 
increases persister formation in both Burkholderia thailandensis and A. baumannii [120]. Notably, although E. coli does not 
produce AHL signals, it has a LuxR solo receptor SdiA [11]. SdiA is highly promiscuous, responding to AHL signals with multiple 
chain lengths and, controversially, to indole [11, 159]. Since E. coli does not synthesize AHL signals, it has been suggested that 
SdiA’s function might be eavesdropping in a bacterial co- culture [160]. Moreover, AHL- SdiA has been associated with decreased 
biofilm formation [161], and SdiA deletion increases motility [162]. Collectively, these findings suggest that SdiA activation 
inhibits biofilm formation [160]. Considering that biofilm formation provides a safe haven for persister formation [163], it is 
plausible that SdiA might be manipulated by AHL- producing bacteria to inhibit E. coli persister formation, with AHL acting as 
a weapon. However, this relationship has yet to be confirmed.

These findings imply that, aside from protecting bacteria themselves against environmental stressors, one of the primary goals 
of these signals in bacterial communities might be to protect comrades while eradicating undesirable neighbours by modulating 
persister development, and thus facilitating host colonization in a competitive microbiome. As a result, in addition to studying 
how QS signals and indole drive persister development in isolated colonies, future research may also explore how a network of 
interspecies signals might mediate persistence and function as both shields and swords in microbial warfare.

thE mIssIng lInk: BRIdgIng PERsIstER mEchAnIsms WIth AntIBIotIc ActIons
Given the variety of antibiotic mechanisms, different classes of antibiotics are likely to orchestrate persistence via different 
pathways. Hence, a link should be made between the specific antibiotics used and the stress responses (e.g. SR, SOS) that regulate 
signalling- mediated persistence in order to hopefully bridge different mechanisms regulated by the same stress responses. In 
many situations, antibiotics were not selected in accordance with the particular pathway under investigation. For example, 
despite various attempts to link TA modules to the SR, a response primarily activated by stalled ribosomes, quinolones (DNA 



15

Shi and Zarkan, Microbiology 2022;168:001266

gyrase inhibitors) and beta- lactam antibiotics (cell wall synthesis inhibitors) have been widely used, antibiotics that might not 
be very relevant in this particular context [31, 32, 44, 71, 75]. As a result, knowing the mechanism of action of various antibiotics 
is essential when designing persister assays to obtain a valid conclusion on the persister development pathway under inquiry. 
Protein synthesis inhibitors such as aminoglycosides can be utilized to investigate SR’s role in modulating persistence, while 
DNA gyrase inhibitors can be employed to investigate mechanisms regulated by the SOS response. It is important to note that a 
persister mechanism directed towards a single class of antibiotics cannot be generalized to others.

In the case of signalling molecules, it has been indicated that CSP- inducible ofloxacin- persister formation is affected by the 
LexA pathway, presumably differently from the SOS- like response pathway in streptococci [127], and indole has been shown to 
mediate quinolone- persister formation by specifically targeting the GyrA subunit of DNA gyrase [137], although this pathway’s 
relationship to the SOS response is unclear. Still, future research should probe other antibiotic- specific and QS/indole- mediated 
persister mechanisms.

BEyond thE gEnEtIc codE: EPIgEnEtIcs As A PotEntIAl PERsIstER mEchAnIsm
Epigenetics is defined as the alterations in the gene expression profile of a cell that are not caused by changes in the DNA sequence 
[164], and one of the best characterized bacterial epigenetic signals is DNA adenine methylation [12]. Since persistence is a non- 
genetic single- cell heterogeneity [7], it is tempting to speculate that persistence may not be purely a genetically wired strategy 
(e.g. TA, QS) but may also be controlled by the epigenome. Interestingly, a computational model suggests that epigenetics is 
associated with several reported persistence properties [164]. Moreover, it was suggested that epigenetic inheritance modulated 
by the transcription factor YdcI might explain a potential E. coli persister mechanism [165]. Additionally, it was shown that 
DNA adenine methylation might be involved in uropathogenic E. coli persister formation [166]. Given recent discoveries linking 
epigenetics to the generation of antibiotic resistance and a recent hypothesis combining bacterial memory of persistence and 
epigenetics [12, 167, 168], the epigenome may also serve as a repository for persistence strategies, speculation that merits more 
exploration in the future.

Is PERsIstER FoRmAtIon stochAstIc, dEtERmInIstIc oR Both?
Persisters have long been classified into two types: some encounter stress signals (e.g. stationary- phase starvations) and enter 
dormancy (Type I or ‘triggered persistence’), while others ‘stochastically’ enter a non- growing state without outside stimuli (Type 
II or ‘spontaneous persistence’) [169]. However, the vagueness of such a description raises questions such as how ‘stochasticity’ 
contributes to persister formation and the range of applicability of the two persister types.

‘Stochasticity,’ or ‘gene expression noise’, is now defined as the stochastic events at the level of transcription and translation [170]. 
To date, stochasticity in several genetic circuits has been considered to be behind E. coli persister formation, including those 
producing HipBA [171], the integration host factor (IHF) [172] and Krebs cycle enzymes [173]; the noisy expressions of the final 
two result in a bacterial subpopulation with low ATP levels and hence enhanced persistence [172, 173]. In Mycobacteria, the stress 
response pathway involving the σ factor SigE is characterized by a bimodal expression of the stringent response modulator Rel, 
resulting in a subpopulation with a high Rel translation (H- state) [174, 175], and since SigE has also been implicated in persister 
formation [176], the H- state might represent persistence, although this speculation has not been validated. Additionally, it was 
recently reported that stochasticity associated with acetate kinase essential for acetate to enter the Krebs cycle mediates persistence 
in M. tuberculosis [177]. In Bacillus subtillis, the noise- driven ComKS system regulates competence and growth arrest, imposing 
a triggered persistence [178]. Interestingly, the epigenetic computational model mentioned in the section above shows that 
epigenetic inheritance, in conjunction with cellular noise, expounds on many aspects of persistence (including the triggered vs. 
spontaneous classification), underlining the possibility that persistence is not solely a genetically coded tactic [164]. However, the 
precise role of biological noise is still under debate [170], and future studies probing noise- mediated persistence should validate 
computational findings with persister assays.

In an attempt to unify the different persister mechanisms, a ppGpp ribosome dimerization persister (PRDP) model that involves 
cAMP, (p)ppGpp, RaiA and other factors has been proposed, where the activation and inactivation of ribosomes play a major 
role in persister formation and resuscitation [179]. Shortly after the PRDP model was published, it was proposed that indole 
signalling activates RaiA to mediate persistence in V. cholerae [147]. Therefore, exploring whether indole signalling fits in the 
PRDP model deserves future investigation. Notably, this model also argues that persistence is a deterministic stress response rather 
than a stochastic event, in line with the findings that external stress transforms practically the entire population into persister 
cells, albeit this model’s applicability requires further investigation [179].

Although Bigger recognized the difference between triggered and spontaneous persisters in the 1940s [5], the classification 
remains somewhat rudimentary since it is still primarily based on phenotypic variance, and no molecular insight can clearly 
distinguish between the two types. Furthermore, the measurements of spontaneous persisters are often confounded by lingering 
triggered persisters from the preceding stationary phase [7]. Given the ambiguity in the classification, additional efforts should 
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be made in the future to standardize the classification and evaluate its applicability to connect it with other related mechanisms 
and determine to what extent and under what conditions persister formation is stochastic or deterministic.

tEchnIcAl lImItAtIons And PRosPEct: FRom Bulk to sInglE-cEll
Since persistence depends highly on medium composition, age of pre- culture, aeration rate, bacterial stage of growth, and many 
other persister assay parameters [180], it is critical to utilize a standardized and optimized method for persister measurements 
to improve the reproducibility of results. It is crucial to highlight the most robust protocol of persister assay published by Goor-
maghtigh and Van Melderen in 2016 [180], which may merit further use in the future. Furthermore, in an effort to further unify 
the field, a consensus statement issued in 2019 gave clear- cut guidelines for persister measurements, highlighting approaches to 
distinguish persister cells from tolerant cells or VBNCs [7].

While the traditional persister assay is a bulk measurement that offers information primarily at the population level, novel micro-
fluidic approaches might provide a plethora of information regarding populational heterogeneity at single- cell resolution [181]. 
Notably, microfluidic approaches have been used to investigate the physiology of persisters and VBNCs previously undiscovered 
using bulk measurements, suggesting microfluidics as a promising approach for future persistence research [141, 182, 183].

BRIdgIng PERsIstEncE REsEARch And clInIcAl PRActIcE
To translate persistence research into more therapeutically relevant insights, future research should study persister mechanisms 
in a more clinically relevant context. Therefore, it is critical to utilize commonly prescribed antibiotics in persister assays, an 
issue that has been less considered in previous studies. For example, despite being one of the most commonly used drugs for 
urinary tract infections [184], trimethoprim- sulfamethoxazole (TMP- SMX) is rarely used in persister assays, emphasizing the 
importance of deliberately selecting antibiotics in persister assays to understand persister mechanisms in a clinical context. 
Table 2 lists examples of diseases and antibiotic treatments against pathogenic bacterial species discussed in this review. These 
antibiotics might be utilized in persister assays to design more therapeutically relevant assays. Notably, Streptococcus mutans is 
not included in the table because, while it is considered a major aetiological agent of dental caries [185], the most recent expert 
consensus on dental caries recommends chlorhexidine gluconate as the antibacterial agent rather than antibiotics [186], implying 
that Streptococcus mutans antibiotic persisters may not be very relevant in the context of dental caries. Similarly, other species 
mentioned above, including C. crescentus, Edwardsiella tarda, B. thailandensis, M. smegmatis, P. fluorescens, and Bacillus subtilis, 
generally do not cause disease in humans [187–192], and hence they are not included in the table.

concludIng REmARks
In this review, we have discussed our current understanding of persister mechanisms. Although TA modules have long been 
thought to be major regulators of persistence [14], their primary roles in persistence have lately been called into doubt [9]. 
Furthermore, there is mounting evidence that QS molecules and indole play critical roles in mediating persistence [10, 11], 
which has sparked interest in developing anti- persister drugs that regulate the activity of QS molecules or indole [150, 193]. 
Among the mechanisms discussed in this review, epigenetics is the least researched. Recent advances in genomic profiling, such 
as single- molecule real- time (SMRT) and nanopore- based sequencing, which enable high- resolution epigenetic detection in 
bacteria on a single- cell level, could perhaps assist future researchers in deciphering how epigenetics correlate with the cell- to- cell 
heterogeneity in a persistent population [12].

Chronic infection is a serious challenge in global healthcare, and recalcitrant infections induced by lingering persisters are a major 
obstacle to achieving successful treatments. Decoding the underlying mechanism of persister formation in a clinical setting is 
critical to developing specialized anti- persister therapies. Besides deliberately choosing clinically relevant antibiotics in persister 
assays, it is critical to examine persister development in a physiological setting. Therefore, toxin overexpression experiments or 
QS/indole signals given exogenously at high concentrations might not be very relevant in clinical settings. Nonetheless, because 
the physiological concentration of QS molecules such as PCN is controversial due to limited sample sizes utilized in past meas-
urements [194], larger sample sizes are required to determine the clinically relevant concentration range in the future. Finally, 
because synergistic interactions between bacterial species may be prevalent at infection sites, it is critical to examine persister 
generation in bacterial communities to find previously unknown community- level persister mechanisms. In summary, future 
research should employ consistent approaches while keeping clinical contexts in mind in order to unravel important persister 
mechanisms that have yet to be uncovered.
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Table 2. Selected bacterial species, examples of associated infectious diseases and antibiotics that could be utilized in persister assays

Species Example diseases Example antibiotic treatment Ref.

Escherichia coli Diarrhoea in children TMP- SMX, NOR, CIP [216]

Urinary tract infection TMP- SMX, quinolone, NFN [184, 217]

Pseudomonas aeruginosa Infections in CF patients CST, TOB, GEN, CIP [218–220]

Staphylococcus aureus Skin infections MSSA strain: cephalosporin, OXA, NAF [221]

MRSA strain: VAN, TEC

Staphylococcus epidermidis Endocarditis VAN, NAF, OXA [222]

Klebsiella pneumoniae Pneumonia Cephalosporin, quinolone, aminoglycoside [223]

Bloodstream infection Third- generation cephalosporin, carbapenem, 
aminoglycoside

[224]

Mycobacterium tuberculosis Pneumonia RIF, STR, INH, KAN, CIP, ETO [225]

Salmonella enterica serovar Typhimurium Gastroenteritis CRO, AZM, fluoroquinolone [226]

Burkholderia pseudomallei Melioidosis CAZ, TMP- SMX, AMC, IPM, CFP- SUL [227]

Burkholderia cenocepacia Cepacia syndrome ATM, DOR, TOB [228]

Streptococcus pyogenes Pharyngitis PEN, benzathine penicillin [229]

Streptococcus pneumoniae Pneumonia AMX, CLR, ERY [230]

Acinetobacter baumannii Pneumonia, urinary tract infections IPM, MEM, DOR [231]

Clostridium difficile Diarrhoea VAN, FDX, MTZ [232]

Vibrio cholerae Cholera DOX, AZM, CIP [233]

Legionella pneumophila Legionnaires' disease Macrolide, fluoroquinolone, TET [234]

AMC, amoxicillin–clavulanic acid; AMX, amoxicillin; ATM, aztreonam; AZM, azithromycin; CAZ, ceftazidime; CF, cystic fibrosis; CFP- SUL, 
cefoperazone- sulbactam; CIP, ciprofloxacin; CLR, clarithromycin; CRO, ceftriaxone; CST, colistin; DOR, doripenem; DOX, doxycycline; ERY, 
erythromycin; ETO, ethionamide; FDX, fidaxomicin; GEN, gentamicin; INH, isoniazid; IPM, imipenem; KAN, kanamycin; MEM, meropenem; MRSA, 
methicillin- resistant S. aureus; MSSA, methicillin- susceptible S. aureus; MTZ, metronidazole; NAF, nafcillin; NFN, nitrofurantoin; NOR, norfloxacin; 
OXA, oxacillin; PEN, penicillin; RIF, rifampicin; STR, streptomycin; TEC, teicoplanin; TET, tetracycline; TMP- SMX, trimethoprim- sulfamethoxazole; 
TOB, tobramycin; VAN, vancomycin.
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