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Abstract: The aim of this study was to estimate the prevalence of pathogenic bacteria on halal beef
carcasses and environmental surfaces in two halal beef slaughterhouses in the United States. To
evaluate halal beef slaughter operations, 144 beef carcass samples (pre- and post-evisceration), and
24 environmental site samples (slaughter hall floor, brisket saw, and offal’s table) were collected
in two halal beef slaughterhouses during June to September 2017. All carcass and environmental
samples were analyzed for the presence of Salmonella spp., Escherichia coli O157:H7, and shiga toxin-
producing E. coli (non-O157 STEC). Results revealed that Salmonella spp. was isolated and confirmed
for the presence of invA gene in 5/36 samples (13.8%) and 5/36 samples (13.8%) at pre-evisceration
in plants A and B, respectively. Salmonella spp. was isolated in 2/9 samples (5.6%) of plants A and
was not detected in any sample at post-evisceration process. E. coli O157:H7 was not detected in any
sample collected from plant A and B. E. coli non-O157 was isolated and confirmed for the presence
of virulence genes in 4/36 samples (11.1%) and 2/36 samples (5.5%) at post-evisceration in plants
A and B, respectively. Salmonella spp. was detected based on the presence of the Salmonella invA
gene in the slaughter hall floor (4/4) and the offal’s table (2/4) samples using multiplex polymerase
chain reaction (mPCR). In plant B, Salmonella spp. was also confirmed in the slaughter hall floor (2/4)
and brisket saw (2/4) samples. On the other hand, one isolate of E. coli O157:H7 and one non-O157
STEC were obtained from the slaughter hall floor of plant A. The E. coli O157:H7 isolate was positive
for stx1, stx2, eaeA, and EHEC-hly genes. Two isolates of non-O157 STEC (2/4) were detected in the
environmental site samples, one from the slaughter hall floor, and one from an offal’s table sample of
plant B. These data can be used to inform food safety interventions targeting halal meat operations in
the southeastern United States.

Keywords: halal slaughterhouse; halal meat; shiga toxin-producing E. coli; Salmonella spp.;
virulence genes

1. Introduction

One of the fastest-growing segments of the US food business, the US halal food market
was valued at USD22.6 billion in 2016 and is anticipated to reach USD26.8 billion by
2021 [1]. The term “halal” which means “lawful” is used to describe food and beverages
that Muslims are allowed to consume. Halal is also meant to signify high standards for
hygiene and cleanliness in the food production process [2]. Halal laws are derived from the
Quran and the Sunnah of the Prophet Mohammad [3]. The animal must be healthy and
alive, the slaughter must be performed by a Muslim according to the prescribed rituals,
and the animal’s throat must be severed with a sharp knife in one quick step to sever
the carotid artery, jugular vein, and throat. The carcass should be drained of its blood
sufficiently [2]. Lastly, the person who is slaughtering the animal must first make the
intention of performing the slaughter then must recite an invocation, typically “Bismillah
and Allahu Akbar” [4].
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In the United States, as of 2018, there were 6500 meat and poultry slaughtering
and processing facilities (including 89 halal slaughterhouses) [5]. The majority of halal
establishments currently fall under the category of very low-volume slaughterhouses.
Very low volume slaughterhouses have on average 10 employees and annually slaughter
≤ 6000 animals [6]. Not surprisingly, US halal slaughterhouses are also located in areas
with large Muslim populations [5]. According to two studies, bacterial contamination is
higher in extremely small-scale (non-halal) slaughterhouses than in large-scale slaughter-
houses [7,8]. Smaller slaughter halls and generalized job duties performed by the same
staff members at low-volume slaughterhouses increase the possibility of carcass contamina-
tion [7]. Additionally, low-volume operations frequently have less automation (more hand
contact), fewer production spaces (possible increase in cross-contamination), inadequate
sanitation skills, and less space overall [9]. The majority of US slaughterhouses for halal beef
(more than 90%) fall under the category of very low-volume operations [5]. Low-volume
operations have the same food safety requirements as large volume operations.

Furthermore, epidemiological data has demonstrated that improperly managed animal
slaughter can result in the contamination of meat with foodborne pathogens [10]. Nineteen
outbreaks of foodborne illness have been linked to slaughterhouses and meat/poultry
processing facilities in the US since 2006. Salmonella spp. was attributed to seven outbreaks
in poultry processing facilities and twelve in beef processing facilities (E. coli O157:H7
caused nine and Salmonella spp. caused three outbreaks) [11]. In addition, there was a
single outbreak associated with ground beef produced by Gab Halal Foods (a halal food
processing facility) caused by Salmonella enterica Typhimurium [12].

The majority of the scientific data relevant to halal slaughter operations originates
from Muslim-majority nations rather than western nations. Only two microbiological
studies have been conducted on halal beef, one in a halal slaughterhouse in the US and the
other in a halal butcher shop in the UK, according to a systematic literature search [5,13].
Five microbiological studies on the slaughter of beef were carried out in Middle Eastern
(Islamic) nations [14–18], but it is challenging to make comparisons because the food safety
system differs from that of developed nations.

Given how quickly the halal food market is expanding in the US, it is sensible to
investigate this segment of production in order to identify potential food safety risks.
Therefore, this study aims to determine the prevalence of pathogenic bacteria (Salmonella
spp., E. coli O157:H7, non-O157 STEC) on halal beef carcasses and environmental surfaces in
two halal beef slaughterhouses in the United States over a four-month using multiplex PCR.

2. Materials and Methods
2.1. Informed Consent

The Clemson University Institutional Review Board approved the research protocol of
this study. Before data collection began at each slaughter operation, the operation manager
provided written consent.

2.2. Sampling Frame and Sample Size

Two halal slaughterhouses (Plants A and B) from the eight halal slaughter operations
included in our geographic sampling frame agreed to participate in the study. Samples were
collected from both slaughterhouses between June and September 2017. During each site
visit (every four weeks for 12 visits), three carcasses were randomly selected, and samples
collected during two processing steps at three carcass sites (brisket, flank, and rump), as
recommended by United States Department of Agriculture-Food Safety Inspection Services
(USDA-FSIS) [19]. Systematic random sampling was used to select carcasses and ensure
all samples were representative of the population of animals slaughtered on the visit day.
Where a starting point was randomly selected, the periodic interval was calculated by
dividing the population size (N = the number of slaughtered animals per day) over the
sample size (n = the number of animals that would be sampled). The total number of
samples was 144 (2 slaughterhouses × 12 carcasses × 2 processing steps × 3 carcass sites).
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2.3. Carcass Sampling

Swabs (100 cm2 each) were collected from each carcass using a carcass sampling
kit (sample-Right™ dry cellulose sponge, Nasco developed Whirl-Pak® bag, single-use
gloves, and 25 mL Butterfield’s Phosphate Buffer (World Bioproducts LLC, Woodinville,
WA, USA)) from three sites on each carcass at two slaughterhouses. A sterile template
10 × 10 cm (100 cm2) (World Bioproducts LLC, Woodinville, WA, USA) was used to mark
the swabbing areas for the three carcass sites, which were taken (1) after hide removal-
pre-evisceration and (2) at the end of slaughter after the final wash before chilling-post-
evisceration. The swabbing procedure included 10 horizontal scrubbing motions followed
by 10 vertical scrubbing motions for each site [20]. Each sample bag was labeled with
a unique identifying code, placed in an insulated container within five minutes of data
collection, then transported on ice for microbiological analysis at Clemson University.
Carcass samples were processed within 12 h of collection.

2.4. Environmental Sampling

During the same visit to collecting carcass samples, three environmental surface sites
(slaughter hall floor, brisket saw, and offal table (offal sorting and washing table)) were
swabbed during slaughtering. The total of environmental samples for each slaughterhouse
was 12 samples (4 visits × 3 surfaces). Surface samples were aseptically collected using
sterile pre-moistened polyurethane foam PUR-Blue™ swabs by rubbing firmly over the
surface area marked with a sterile template (10× 10 cm) [21]. Each swab was labeled with a
unique identifying code, placed in the shipping container within five minutes of collection,
then transported on ice for microbiological analysis at Clemson University. Environmental
samples were processed within 12 h of collection.

2.5. Microbiological Analysis of Beef Carcasses and Environmental Samples

All carcass and environmental samples were analyzed for the presence of Salmonella
spp., E. coli O157:H7, and non-O157 STEC.

2.5.1. Salmonella spp. Isolation and Confirmation

A total of 168 different samples (144 beef carcass samples (9 samples × 2 slaughter
processes × 2 plants × 4 visit times) and 24 environmental samples) were analyzed using
the ISO 6579, 2002 (updated in 2007) standard method for the detection of Salmonella spp.
Sterile buffered peptone water (Alpha Bioscience Inc., Baltimore, MD, USA) was added to
each sample at a 1:10 ratio and homogenized in a stomacher for 2 min at room temperature
then incubated at 35–37 ◦C for 24 h. After incubation, 0.1 mL and 1 mL of pre-enriched
culture were transferred to 10 mL Rappaport-Vassiliadis Broth (EMD Chemicals Inc.,
Darmstadt, Germany) and Tetrathionate Broth (EMD Chemicals Inc., Darmstadt, Germany)
then incubated at 41.5 ◦C, 37 ◦C for 24 h, respectively. Isolates were cultured on Brilliant
Green Agar (Sigma-Aldrich, St. Louis, MO, USA), Xylose Lysine Deoxycholate Agar (Difco,
Sparks, NV, USA), Bismuth Sulfite Agar (Sigma-Aldrich, St. Louis, MO, USA), and Hektoen
Enteric Agar (Difco, Sparks, NV, USA) then incubated at 35–37 ◦C for 24–48 h [22]. All
presumptive Salmonella spp. isolates were biochemically confirmed using Triple Sugar Iron
Agar (Oxoid LTD, Hampshire, UK) and Lysine Iron Agar (Oxoid LTD, Hampshire, UK).

Salmonella spp. isolates were confirmed using polymerase chain reaction (PCR).
Salmonella Enteritidis (H2292) was used as a positive control. A 284 bp region of the
invA gene was targeted and amplified for Salmonella spp. using 139-R (5′-GTG AAA TTA
TCG CCA CGT TCG GGC AA) and 141-F (5′-TCA TCG CAC CGT CAA AGG AAC C)
primers designed by [23]. Subsequently, a colony from the plate was suspended in 1 mL
sterilized distilled water in a 2 mL Eppendorf tube and boiled for 10 min. Thereafter, the
Eppendorf tube was chilled on ice then centrifuged at 7000 rpm for 5 min. Two microliters
of the supernatant were used as template DNA in the PCR reaction.

Reactions were carried out in a total volume of 25 µL containing 2 µL of DNA template
(60 ng of DNA), 1 µL (100 pmol) of each primer, 2U Taq Polymerase, 10× Taq buffer (100 mM
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Tris-HCl (pH8.3), 500 mM KCl), 25 mM MgCl2, and 2.5 mM dNTP mixture (Takara Bio Inc.,
Tokyo, Japan). PCR amplifications were conducted using a DNA thermocycler (Eppendorf
Realplex2 Mastercycler, Hamburg, Germany). The PCR protocol consisted of an initial
incubation for 2 min at 95 ◦C followed by 30 cycles of denaturing for 30 s at 95 ◦C, 30 s at
50 ◦C for annealing, and 45 s at 72 ◦C for extension then 7 min at 72 ◦C for the final extension.
The PCR products were mixed with 6× loading dye and analyzed by electrophoresis on
1.2% agarose gel with TBE (Tris/Borate/EDTA) as the running buffers. Thereafter, the
products were stained with ethidium bromide and visualized by UV illumination (BIO-
RAD Laboratories, Milan, Italy).

2.5.2. E. coli O157:H7 and Non-O157 STEC Isolation and Identification

A total of 168 unique samples (144 beef carcass samples (9 samples × 2 slaughter
processes × 2 plants × 4 visit times) and 24 environmental samples) were analyzed for the
detection of E. coli O157:H7 and non-O157 STEC using the ISO 16654, 2001 standard method.
Samples were enriched in a modified Tryptic Soy Broth with Novobiocin (Sigma-Aldrich,
St. Louis, MO, USA) at a 1:10 ratio and homogenized in a stomacher for 2 min at room
temperature (Model 400, Seward Stomacher®, West Sussex, UK) then incubated at 41.5 ◦C
for 18–24 h. A 1.5 mL Eppendorf tube was used for separation and concentration. One ml
of the enriched broth culture was treated with 20 µL immunomagnetic beads coated with
anti-O157 antibody (Dynabeads™ anti-E. coli O157) (Applied Biosystems, Inc., Foster City,
CA, USA) for 10 min with continuous agitation using an MPC™-S rack (DYNAL Biotech,
Inc., Lake Success, NY, USA) to prevent the beads from settling. Multiple washing steps
using a sterile wash buffer were used to avoid cross-contamination. The Eppendorf tubes
were inserted onto the Magnetic plate MPC™-L (DYNAL A.S, Oslo, Norway) for 3 min for
maximum recovery of Dynabeads® anti-E. coli O157. The sample supernatant was carefully
aspirated and discarded. Dynabeads®-bacteria complex was resuspended in 100 µL of
wash buffer and mixed briefly by vortex.

Fifty (50) µL of Dynabeads®-bacteria complex was inoculated onto MacConkey Sor-
bitol Agar containing Cefixime-Tellurite supplement (CT-SMAC) (Sigma-Aldrich, St. Louis,
MO, USA) and CHROMagar™ O157 (DRG International Inc., Springfield, IL, USA) and
incubated at 37 ◦C for 24 h. Colorless colonies on CT-SMAC and mauve colonies on CHRO-
Magar™ O157 were examined by the indole tests (Sigma-Aldrich, St. Louis, MO, USA)
and specific latex agglutination test for E. coli O157:H7 (Remel™ Wellcolex™, Kent, UK) to
confirm the isolates before using multiplex PCR.

In this study, a multiplex PCR reaction was performed for the detection of four gene
sequences (stx1, stx2, eaeA, and EHEC hlyA) of E. coli O157:H7 and non-O157 shiga toxin-
producing E. coli. E. coli O157:H7 (F6B-2) was used as a positive control. Oligonucleotide
primers were manufactured commercially (Invitrogen, Life Technologies Inc., Waltham,
MA, USA) (Table 1).

Table 1. List of primer sequences, target genes, and predicted lengths of amplification products.

Target
Genes Direction Primer Sequence Size of PCR

Amplicon (bp) Reference

stx1 Forward
Reverse

ACACTGGATGATCTCAGTGG
CTGAATCCCCCTCCATTATG 614 [24]

stx2 Forward
Reverse

CCATGACAACGGACAGCAGTT
CCTGTCAACTGAGCAGCACTTTG 779 [25]

eaeA Forward
Reverse

GTGGCGAATACTGGCGAGACT
CCCCATTCTTTTTCACCGTCG 890 [25]

EHEC-
hly

Forward
Reverse

ACGATGTGGTTTATTCTGGA
CTTCACGTGACCATACATAT 165 [26]

E. coli isolates were incubated at 37 ◦C overnight on tryptone soya agar (Difco, Sparks,
NV, USA) plates. Subsequently, a colony from the plate was suspended in 1 mL sterilized
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distilled water in a 2 mL Eppendorf tube and boiled for 10 min. Thereafter, the Eppendorf
tube was chilled on ice and then centrifuged at 7000 rpm for 5 min. Two (2) µL supernatant
was used as template DNA in the PCR reaction.

PCR assays were carried out in a total volume 50 µL containing 2 µL DNA template
(60 ng of DNA), 2 µL of 2 mM concentrations of each primer, 4 U Taq Polymerase, 10× Taq
buffer (100 mM Tris-HCl (pH8.3), 500 mM KCl), 25 mM MgCl2, and 2.5 mM dNTP mixture
(Takara Bio Inc., Tokyo, Japan). Temperature conditions consisted of an initial incubation
for 3 min at 95 ◦C followed by 35 cycles of 95 ◦C for 20 s, 58 ◦C for 40 s, and 72 ◦C for 90 s
then 5 min at 72 ◦C for the final extension.

2.6. Statistical Analysis

Descriptive and inferential statistics were performed using JMP Pro16.1 software [27].
Percentages were calculated as a descriptive statistic. A chi-square test was used to deter-
mine whether there was a significant relationship between two slaughter processing steps
and pathogenic reduction frequencies. Results were significant with a p < 0.05.

3. Results
3.1. Prevalence of Pathogenic Microorganisms in Beef Carcasses

A total of 144 different samples were tested for Salmonella spp., E. coli O157:H7 and
non-O157 STEC during four months of sampling (June–September 2017) of plant A and B.
Salmonella spp. was isolated and confirmed for the presence of invA gene in 5/36 samples
(13.8%) and 5/36 samples (13.8%) at pre-evisceration in plants A and B, respectively.

Salmonella spp. was isolated in 2/9 samples (5.6%) of plants A and was not detected in
any sample at post-evisceration. Table 2 shows the number of Salmonella spp. isolates using
different media and PCR.

Table 2. The occurrence of presumptive Salmonella spp. in beef carcasses during slaughter processes
in two plants (June–September 2017).

Month Plant Slaughter
Process

No. of Positive
Samples

on Different Media
XLD BSA HE TSI

No. of Positive
Samples

(PCR)—invA Gene

June
Plant A

Pre 2/9 + + + + 2/9
Post ND ND

Plant B
Pre ND ND
Post ND ND

July
Plant A

Pre 1/9 + + + + 1/9
Post 1/9 + + + + 1/9

Plant B
Pre 2/9 + + + + 2/9
Post ND ND

August
Plant A

Pre 1/9 + + + + 1/9
Post ND ND

Plant B
Pre 2/9 + + + + 2/9
Post ND ND

September
Plant A

Pre 1/9 + + + + 1/9
Post 1/9 + + + + 1/9

Plant B
Pre 1/9 + + + + 1/9
Post ND ND

ND: not detected, XLD: Xylose Lysine Deoxycholate agar, BSA: Bismuth Sulfite agar, HE: Hektoen enteric agar,
TSI: Triple Sugar Iron agar.

E. coli O157:H7 was not detected in any sample collected from plant A and B. E. coli
non-O157 was isolated and confirmed for the presence of virulence genes in 4/36 samples
and 2/36 samples at post-evisceration in plants A and B, respectively (Table 3).
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Table 3. The occurrence of presumptive non-O157 STEC strains in beef carcass samples during pre-
and post-evisceration in two plants using CHROMagar STEC medium and multiplex PCR.

Plant
Slaughter

Process

No. of Isolates
on

CHROMagar
STEC Medium

No. of Isolates
Confirmed by

Multiplex PCR

No. of Positive Gene(s)

stx1 stx2 eaeA EHEC-
hly

stx1 +
eaeA

eaeA +
EHEC-

hly

stx1+
eaeA+
EHEC-

hly

Plant A Pre-
evisceration 13/36 (36.1%) 13/36 8 1 1 1 - - 2

Plant A Post-
evisceration 4/36 (11.1%) 4/36 - - - - 1 1 2

Plant B Pre-
evisceration 14/36 (38.8%) 14/36 6 5 - 1 1 - 1

Plant B Post-
evisceration 2/36 (5.5%) 2/36 1 - 1 - - - -

- means genes were not detected.

Most interestingly, pathogenic E. coli (non-O157 STEC), and Salmonella spp. In carcass
samples significantly decreased (p < 0.02) after the decontamination steps (final wash) in
both plants.

3.2. Environmental Sites Pathogenic Bacteria

A total of 24 different environmental samples were tested for Salmonella spp. And
non-O157 STEC. Salmonella spp. was confirmed for the presence of Salmonella invA gene in
the slaughter hall floor (4/4) and the offal’s table (2/4) samples using multiplex PCR. In
plant B, Salmonella spp. was also confirmed in the slaughter hall floor (2/4) and brisket saw
(2/4) samples. On the other hand, one isolate of E. coli O157:H7 and one non-O157 STEC
were detected in the slaughter hall floor of plant A. E. coli O157:H7 was positive to stx1,
stx2, eaeA, and EHEC-hly genes. Two isolates of non-O157 STEC (2/4) were detected in the
environmental site samples, one from the slaughter hall floor, and one from offal’s table
sample of plant B.

4. Discussion

A limited number of studies describing halal beef carcass hygiene at slaughter are
available, yet data are needed to characterize food safety risk factors. Salmonella spp.
and E. coli O157 are common causes of foodborne illnesses. Evisceration and de-hiding
processes can lead to contamination of carcasses during slaughter operations. Therefore,
we aimed to estimate the prevalence of pathogenic bacteria (Salmonella spp., E. coli O157:H7,
non-O157 STEC) on halal beef carcasses and environmental surfaces in a convenience
sample of two halal beef slaughterhouses in the United States.

In the present study, we observed a carcass contamination rate of 5.6% for Salmonella
spp. at post-evisceration in plant A. However, there was no isolate of Salmonella spp. in beef
carcasses at post-evisceration in plant B. The results indicated that the overall percentage
of Salmonella spp. positive carcass samples was higher for pre-evisceration samples and
decreased following the application of carcass decontamination procedures [28,29]. This
suggests that decontamination interventions in plant B were more effective than plant
A for reducing microbial loads. Using a high-pressure nozzle spray (i.e., automated
washing cabinet-specific time for each treatment) of cold water in plant B (68 ◦F), hot
water 180 ◦F, and organic acid (lactic acid 2%) has shown the effectiveness of microbial
interventions at the final wash process. Our findings were similar to other published results
that confirmed the efficacy of decontamination interventions at post-harvest approaches of
beef slaughter [30,31].

The implementation of the food safety practices under the supervision of the USDA-
FSIS showed lower microbial contamination in beef carcasses in the two halal slaughter
operations (post-evisceration samples) compared to other studies, revealing higher contam-
ination (7.1% and 7.8%) [32,33]. In addition, this study showed that the main contamination
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came from the de-hiding process compared to the post-evisceration process. Additionally,
weather may affect beef pathogen load and has been studied previously; a study con-
ducted in the US found a higher prevalence of Salmonella spp. during warmer than colder
months [34], and our samples were collected in the summer.

The incidence of non-O157 STEC was higher in pre-evisceration than post-evisceration.
Additionally, the plant A showed higher non-O157 STEC contamination than plant B. The
reason may be the effectiveness of automatic decontamination interventions compared to
manual decontamination intervention (low-pressure to wash the carcasses (spray manually)
with no set time for each treatment in plant A). Previous studies (non halal) showed that
58.3% of the beef carcasses tested in large processing plants in the United States carried at
least one type of non-O157 STEC in pre-evisceration samples, however, the prevalence was
reduced by using a variety of antimicrobial intervention strategies to 8.3% of the carcasses
carrying non-O157 STEC at the post-evisceration process [35]. Rogerie et al. reported a
lower post-evisceration non-O157 STEC prevalence (1.9%) on carcasses sampled during
the summer at beef slaughterhouse in France [36]. Our findings revealed lower non-O157
STEC in beef carcasses compared to previous studies [36,37], whereas 10.7 and 11.4% of the
post-evisceration samples were confirmed by multiplex PCR as carrying shiga toxin genes.

Lastly, the sanitation conditions of the slaughterhouse environment findings showed
low levels pathogenic microorganisms in plant B suggesting effective implementation of
sanitation standard operating procedures (SSOP) to control for environmental contami-
nation of fecal contamination. Our review of SSOPs indicates that halal slaughterhouses
implemented the routine cleaning procedures properly which can remove microbiological
contamination effectively. Unlike our findings, Barros et al. found a higher contamination
of E. coli on the floor, saw, and tables in non-halal slaughterhouse [38]. Piras et al. also
found a higher contamination with Salmonella spp. which was isolated from 13 of 41 envi-
ronmental samples (31.7%) at the end of the sampling day in non-halal slaughter activities
compared with our study [39].

5. Limitation

The results of this study were limited to the participation of two slaughterhouses in
the United States, where the other six halal slaughterhouses in our geographic sampling
frame refused involvement. Therefore, our findings can only be generalized to the two sites
included in the study.

6. Conclusions

In order to protect human health against Salmonella spp. and pathogenic E. coli infec-
tions transmissible between animals and humans, the implementation of the food safety
practices (HACCP system) under the supervision of the USDA-FSIS provided significant
control and prevention of microbial contamination in beef carcasses in the two halal slaugh-
ter operations in our study. Indeed, hygienic control programs, e.g., SSOP of the halal
slaughterhouses, would reduce the risk of environmental contamination, which is a poten-
tial source of foodborne pathogens. The findings in this study may suggest that carcass
contamination is influenced by slaughterhouse, and this could be due to variations in how
the intervention is implemented. There were some sites in the slaughter environment that
had varying degrees of contamination. The results of environmental samples did not show
an association with carcass contamination. Our findings showed that the main contamina-
tion came from the de-hiding process compared to the post-evisceration process. Further
research in non-Muslim majority countries is recommended to evaluate the microbial status
of other halal animals (sheep, goat, and poultry).
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