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Abstract

With the rapid growth of the aquaculture production since the 1980s, there has been a

concomitant increase in disease outbreaks. The injudicious and/or incorrect use of anti-

microbial agents against diseases of farmed aquatic species poses a considerable threat

to the development and growth of a successful and sustainable aquaculture industry. An

increase in antimicrobial resistance (AMR) is an important consequence, resulting to the

difficulty in treating common bacterial diseases in populations of aquatic organisms, com-

bined with the presence of antibiotic residues in food fish and their products, leading to

import refusals and negative impacts on international trade. To reduce the frequency of

AMR, good aquaculture and effective biosecurity practices should include the prudent

and responsible use of antibiotics and also consider the use of alternatives to antibiotics,

in addition to disease prevention management. This article reviews the literature discuss-

ing the scope of the problem pertaining to antibiotic use, the emergence of AMR in aqua-

culture and to consider and discuss viable alternatives (e.g., vaccination, bacteriophages,

quorum quenching, probiotics and prebiotics, chicken egg yolk antibody and medicinal

plant derivative). We also discuss lessons learnt, from specific case studies such as the

vaccination of farmed salmon in Norway and the use of ‘specific pathogen-free’ seed—
as primary and essential part of a biosecurity strategy.
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1 | INTRODUCTION

Aquaculture, or the rearing of aquatic animals and plants for food, is

complex and covers a wide range of variables.1 Aquaculture systems

may vary in their environment, that is, fresh-, brackish- and sea-water;

coastal, riverine and land-based; tropical to temperate regions; in type,

that is, farmed species may include seaweeds, molluscs, crustaceans

and finfish species; in scale, that is, extensive, semi-intensive and

intensive farming; relatively low numbers of high-value finfish to large

numbers of low-value invertebrates; in input, that is, natural and artifi-

cial diets; and wild harvested stocks to cultured progeny from eggs to

adults. Variations in the applicability of technologies to control the

aquaculture environment depend on national and commercial econo-

mies and infrastructures, as well as the species under culture. Conse-

quently, aquaculture varies from large, international high technology

farming of high-value species, to labour-intensive, low-technology

subsistence farming in earthen ponds. To meet the growing demands

for aquatic food production, aquaculture has expanded rapidly since

the 1980s to become the world's fastest-growing food production

sector,2 particularly in Asian countries that supply 89% of the global

aquaculture production.3 The rapid development, intensification and

globalisation of the sector have led to many challenges, including the

emergence and spread of diseases, resulting to reliance on antimicro-

bials to improve aquaculture production.

Aquatic organisms live among an array of microbes, some of

which are potential pathogens, depending on a variety of factors spe-

cific to the host, pathogen and environment. Most bacterial pathogens

in aquatic animals are aerobic, gram-negative rods and, for this reason,

most antibiotics used in aquaculture are effective against gram-

negative bacteria.4 In fact, a survey conducted by the Food and Agri-

culture Organisation of the United Nations (FAO) in 2012 reported

oxytetracycline, florfenicol and trimethoprim/sulfadiazine as the most

commonly used antibiotics for controlling diseases on farms.5 The

availability and use of antibiotics in aquaculture vary widely and is

controlled in Europe,6 North America and Japan, but not in many

developing countries, that dominate aquaculture production.7 For

example, Norway and Scotland use �0.02–0.39 g of antibiotics per

metric tonne (MT) of harvested salmon, compared to �660 g per MT

in Chile.7 It is not practical to treat individual animals in aquaculture;

therefore, metaphylactic use of antibiotics to treat entire populations

is common practice.8

All exposure to antimicrobials, either during treatment or chronic

and sub-therapeutic level exposure would select resistant mutants

that may emerge spontaneously. This is classic evidence of evolution.

Once a bacterial strain is resistant, this resistance can be transferred

to other bacterial species and strains via horizontal gene transfer.9

Common bacterial diseases occurring in aquaculture, such as furuncu-

losis (Aeromonas salmonicida) and edwardsiellosis (Edwardsiella tarda),

are becoming harder to treat due to an increase in antimicrobial resis-

tance (AMR).10 The situation in human medicine has now progressed

to the stage where diseases such as pneumonia, tuberculosis, septi-

caemia, gonorrhoea and salmonellosis can be difficult to treat due to

resistance to commonly used antibiotics. This has been attributed to

inappropriate or excessive use of antibiotics in human medicine.

Indeed, while there is evidence that sub-therapeutic levels of antibi-

otics found in aquaculture environments can have human origins from

wastewater,11,12 it should be noted that most of the antibiotics in

aquaculture environments come from direct use in this activity.8

Wastewater treatment is currently developing technologies to remove

these molecules prior to release into the environment.13–15 Studies

also report the association between the development of AMR in agri-

culture or aquaculture environments contributing to the resistance of

human pathogens to antibiotics.16,17

Though closely related genetic factors contributing to AMR have

been found in animal and human pathogens, there is no conclusive

evidence to show the direction of gene flow. A systematic review

concluded that though some studies suggested that transmission of

AMR from food animals to humans may occur, robust conclusions on

the directionality of transmission cannot be drawn due to limitations

in study methodologies.18

Zoonotic pathogens, such as Streptococcus iniae, Aeromonas hydro-

phila, Vibrio vulnificus, Photobacterium damselae and Mycobacterium

marinum carry extended-spectrum beta-lactamases (ESBL) and other

AMR genes (ARGs) that spread through food web.19 People can con-

tract zoonotic bacteria through contact with aquatic animals, which

would, of course, prove that antimicrobial-resistant bacteria and ARGs

from aquaculture can be transmitted to humans.20,21

Antimicrobial residues in food have received widespread atten-

tion, and their presence in animal products constitutes a socio-

economic challenge to food safety and public health. The major public

health implications of antimicrobial residues include the development

of AMR, allergies (penicillin), carcinogenicity (sulfamethazine, oxytet-

racycline and furazolidone), anaphylactic shock, nephropathy (genta-

micin), mutagenicity, teratogenicity, bone marrow depression and

disruption of normal intestinal flora.22,23 The indiscriminate use of

antimicrobial agents in aquaculture results in residues in aquaculture

products and associated adverse effects on human health, and there-

fore control measures are needed to reduce the use of antibiotics in

aquaculture, to ensure consumer protection.

The FAO/OIE/WHO Report of a joint FAO/OIE/WHO expert con-

sultation on antimicrobial use in aquaculture and antimicrobial resistance

held in Seoul, Republic of Korea, 13–16 June 2006,10 summarised that

the hazards associated with antimicrobial use in aquaculture are:

(a) antimicrobial residues associated with products of aquaculture and

(b) selection and spread of AMR. It was concluded that of these two

potential hazards, the second one is more serious since AMR does not

respect phylogenetic or geographical borders and can spread between

aquatic bacteria, animal and human pathogens and the gene flow can

occur in any direction. For example, selection of resistance may happen in

pathogens of aquatic animals making the treatment of fish diseases inef-

fective or resistance may be transferred from aquatic bacteria to patho-

gens of animals or humans making treatment in these sectors difficult.

Another problem with use of antimicrobials in aquaculture is that unlike

in the terrestrial environment, where individual animals can be treated or

antimicrobials delivered by injection, treatment of aquatic animals is pre-

dominantly through feed (Figure 1). Sick animals may have reduced feed

2 BONDAD-REANTASO ET AL.
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intake, further impacting the treatment efficiency. Unutilized medicated

feed may end up in sediments (Figure 1), where selection of resistant bac-

teria could occur. This would contribute to enhancing the pool of resis-

tance in the aquatic environment. In view of these, alternatives to

antibiotics for treatment of fish diseases are essential for improving the

sustainability of the aquaculture sector.

Antibiotic residues, or metabolites found in trace amounts in any

edible portion of the animal product after the administration of the

antibiotics, represent a serious threat to human health. Indeed, the

presence of antibiotic residues in fish and shellfish is one of the most

common causes of detentions at the borders of the largest fish mar-

kets of the European Union (EU), the United States of America (USA)

and Japan. This often leads to the destruction of the products con-

cerned, with substantial negative economic consequences for the

exporting countries. Residue monitoring in most of the aquaculture

producing countries is driven by international market requirements.

As a single trading block, the EU accounts for over 60% of imports,

and the regulations in EU member countries are consistent and

uniform.24 Therefore, many aquaculture-producing countries strive to

comply with EU requirements. For chemicals banned for use in aqua-

culture, the EU follows the approach of using the most sensitive

method available for detection and the regulations establish the mini-

mum required performance limit for the method to be used. Most

aquaculture producing countries have adopted these methods and the

laboratories performing residue monitoring are accredited to ISO

17025. There are some antibiotics, for example, tetracyclines and par-

asiticides, permitted for use in food fish in the EU25; however, there is

no uniformity in drugs permitted for aquaculture in many producing

countries and there have been some instances of differences in maxi-

mum residue limits and methodology used for determining their levels.

There are also some NGOs that recommend against consumption of

fish raised with excessive amounts of antimicrobials. Overall, there

has been a drastic reduction in import refusals and rapid alerts for vet-

erinary drugs in aquaculture products.26,27

Antimicrobial resistance (AMR) in environmental bacteria is a nat-

ural phenomenon. Even in environments where exposure to

F IGURE 1 Potential negative consequences of antimicrobial resistance (AMR) in aquaculture through medicated feed treatments on farms
(Figure credit: Brett MacKinnon, Hao Bin, Andrea Dall'Occo)

BONDAD-REANTASO ET AL. 3
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antimicrobial agents is negligible, resistant bacteria have been found,

for example, in over 500 km offshore areas and in deep sea.28 AMR

may arise due to naturally occurring mutations or through horizontal

transfer of genes from resistant bacteria though phenomenon such as

transformation (transfer of cell-free DNA to bacteria that are recep-

tive or competent) or transduction (bacteriophage-mediated gene

transfer) or conjugation (transfer of mobile genetic elements like plas-

mids through cell to cell contact). Resistant bacteria may be selected

and proliferate when subjected to selective pressure in environments

where antimicrobials are used. Dissemination of AMR may occur

through aquatic environments (effluents from hospitals and farms

reaching lakes, rivers) and use of water for irrigation, in animal farms

or in aquaculture. Further, wild animals and birds like seagulls, which

travel long distances are known to disseminate resistant bacteria to

different environments.29

The World Health Organization (WHO), the World Organisation

for Animal Health (WOAH, formerly OIE) and FAO, in collaboration

with relevant public and private organisations, launched a global

response to the threat of AMR. The international context of veteri-

nary medicines in aquaculture, their usage and benefits, as well as

concerns on their mis- or over-usage and how to address AMR, were

extensively discussed by FAO,30 highlighting the need to promote

good aquaculture practices for health management. It included the

prudent and responsible use of antibiotics in aquaculture and the

reduction in bacterial antibiotic resistance on a global scale, as well as

alternative strategies to improve the immunity of aquatic organisms

to bacterial diseases or to mitigate pathogen virulence.

The objective of this article is to review available literature that

has discussed the scope of the problem pertaining to drug use, the

emergence of AMR in aquaculture and to consider vaccination, bacte-

riophages, quorum quenching, probiotics and prebiotics, chicken egg

yolk antibody and medicinal plant derivatives as alternatives to antibi-

otics. We also discuss lessons learnt, from the vaccination of farmed

salmon in Norway and the use of ‘specific pathogen-free’ (SPF)

seed—as a primary and essential part of a biosecurity strategy.

2 | SCOPE OF THE PROBLEM

The spread of diseases in aquaculture may be due to inadequate man-

agement and poor environmental conditions, including feeding levels,

removal and restocking and inadequate nutrition.31 These situations

may lead to secondary bacterial infections and therefore the use of

antimicrobial agents in aquaculture is required for the treatment and

prevention of infectious diseases. Antibiotics are commonly used in

aquaculture as therapeutic, prophylactic or metaphylactic agents.31,32

The most commonly used antibiotics in aquaculture worldwide are

tetracycline, oxytetracycline (tetracyclines), oxolinic acid, flumequine,

sarafloxacin, enrofloxacin (quinolones), amoxicillin (β-lactams), eryth-

romycin (macrolides), sulfadimethoxine (sulfonamides), ormetoprim

(diaminopyrimidines) and florfenicol (amphenicols).30 Each country

has its own legislation regarding the approval of antibiotics, usage

practices and residue limits in aquaculture products.

As a result of this increased antibiotic use and misuse, mutations

in bacterial DNA and horizontal gene acquisition have led to survival

and establishment of bacteria resistant to those specific antibiotics.33

The genetic elements and genes involved in the generation and dis-

semination of ARGs in aquatic bacteria are similar to those previously

characterised in terrestrial bacteria.34–39 The resistance genes

(Table 1) are spread via horizontal gene transfer between bacterial

species and genera40 via DNA plasmids or other mobile genetic ele-

ments.40,41–47 Some bacteria may become multidrug-resistant by

acquiring genes from multiple sources.45,48–56 Multi-drug resistance is

affected by vertical and horizontal gene flow across different food

webs; however, it may be controlled by bacteriophages.57

Approximately 80% of antimicrobials used in aquaculture enter

the environment with their activity intact.7 The commonality of the

mobilome between aquatic and terrestrial bacteria and the presence

of residual antimicrobials, biofilms and high concentrations of bacte-

riophages in an aquatic environment that is also contaminated with

human and animal pathogens, can result in horizontal gene transfer

between aquatic and terrestrial bacteria.8 Antibiotic residues may per-

sist in sediments,41,58–61 water62,63 or host tissues,64–68 and are con-

sidered a risk to human health, requiring a withholding period after

treatment.56,69 Of particular concern is the prophylactic use of

antibiotics,52,55,58,70 often in the ornamental fish trade.71 This not only

leads to emergence of resistant strains, but moves them, and their

resistance genes, globally.

On a global scale, the active ingredients used in aquaculture are

often the same as those used in antibiotic therapies for terrestrial ani-

mals (livestock and pets) in the veterinary sector. One common exam-

ple is that of the sulfonamides and quinolones that seem to be

irreplaceable in aquaculture, which are also widely used within the

poultry sector. Several cases of inter-species transference of antibiotic

residues in animal production have been reported, with negative

effects of bacterial resistance on both species involved.72,73 It should

also be recognised that the by-products of poultry farming are often

used in the production of aquaculture feed.74

This decade, resistance to all antibiotic groups have been

reported from aquaculture globally. A brief description of these antibi-

otic groups, their modes of action and examples of literature reporting

the use of such drugs in aquaculture are provided below:

• Tetracyclines: Tetracyclines are among the most common bacterio-

static drugs used in aquaculture. Naturally, derived tetracyclines

have been available since the 1950s and several semi-synthetic

derivatives have been produced over the following decades.75 Tet-

racyclines inhibit bacterial protein synthesis by binding to the ribo-

somal 30S subunit of the cell. Oxytetracycline (OTC) and

chlortetracycline have been used in aquaculture due to their

broad-spectrum activity, wide availability and low cost. OTC is

approved for use in food fish in the major importing countries,

including the European Union, USA and Canada.25,76,77 The exces-

sive usage of OTC on farms has lead to resistance of many bacte-

rial pathogens to tetracycline antibiotics in general.78 OTC is

commonly used to treat bacterial diseases of fish, such as ulcer

4 BONDAD-REANTASO ET AL.
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disease (Hemophilus piscium), tenacibaculosis (Tenacibaculum mariti-

mum) and furunculosis (Aeromonas salmonicida).79,80 Tetracycline

and doxycycline are semi-synthetic derivatives used to a limited

extent in aquaculture. The following are recent papers reporting

the use of tetracyclines in aquaculture in various countries and

regions: Brazil,48 Finland,58 Chile,45,59,81 Taiwan Province of

China,43 Vietnam,40 China,51,60,82 Bangladesh,83 Korea,55,71 South

Africa,84,85 Tunisia86 and Portugal.87

• β-Lactams: β-lactams are antibiotics with a wide range of therapeu-

tic activities and minimal side effects. This class of antibiotics inter-

fere with peptidoglycan synthesis, which is a major component of

bacterial cell walls88 and destroys the integrity of the cell walls,

causing lysis of the cell. Common β-lactam antibiotics used in aqua-

culture include amoxicillin, cephalosporins, penicillin, ampicillin,

cephalexin, cefradine and cefotaxime.89 The following are some

recent reports on the use of β-lactams in the aquaculture industry:

Brazil,48 Italy,90 Turkey,42 Chile,59 China,50,91 Vietnam,40

Korea55,71,92 and South Africa.84,85

• Aminoglycosides: Aminoglycosides are bactericidal, broad-spectrum

antibiotics that bind to the 30S subunit of ribosomes, inhibiting the

protein synthesis of bacteria.93 Natural or semi-synthetic deriva-

tives exist.93 Neomycin, gentamycin S, kanamycin and apramycin

have been reported as the most widely used aminoglycosides

among the major 15 aquaculture-producing countries from 2008

to 2018.89 Aminoglycosides are highly soluble; however, limited

information is available on their presence in the environment, mak-

ing it difficult to determine their role in the development of AMR.

Recent reports of the use of aminoglycosides in the aquaculture

sector include: Italy,90 Turkey,42 China,51 Korea,71,92 South

Africa,84,85 Chile45 and Portugal.87

• Amphenicols: Amphenicols are a class of broad-spectrum antibi-

otics that inhibit microbial protein synthesis via binding with the

peptidyl transferase enzyme at the 50S subunit of the 70S bacte-

rial ribosome, resulting in bacteriostatic effects.94 Despite having

been banned in the EU and many other countries, chlorampheni-

col is a widely used drug to treat fish, particularly in developing

countries.89 Chloramphenicol has been commonly used in human

medicine until an irreversible, non-dose-related aplastic anaemia

resulting from the use of this drug became apparent in the early

1960s.95 However, it is still widely used in developing countries

in human medicine. Thiamphenicol and florfenicol, amphenicols

that do not have this side effect in humans, are widely used in

veterinary medicine around the world. These two derivatives

vary from chloramphenicol in their chemical structure, in which

a p-methylsulphophenyl group is present instead of the

p-nitrophenyl group found in chloramphenicol.95 Florfenicol is

approved for use in all the major aquaculture-producing coun-

tries and its use in aquaculture has been reported in many coun-

tries, including Turkey,42 China,50,51 Viet Nam,40 Chile,45 Korea55

and Portugal.87

TABLE 1 Antibiotics and their resistance genes discovered in aquatic pathogens and aquaculture effluent

Antibiotic Target microbe/source Resistance genes Reference

Tetracyclines

Tetracycline Piscirickettsia salmonis tetA and tetG Shah et al. (2014)

Tetracycline Edwardsiella tarda tetA and tetM Lo et al. (2014)

Amoxicillin Edwardsiella tarda blaTEM Algammal et al. (2022)

Tetracycline Edwardsiella tarda tetA Algammal et al. (2022)

Tetracycline Korean fish farm effluents tetA, tetB, tetD, tetE, tetG, tetH,

tetM, tetQ, tetX, tetZ, tetBP

Jang et al. (2018)

β-Lactams

Amoxicillin Piscirickettsia salmonis blaTEM Shah et al. (2014)

β-Lactams Korean fish farm effluents blaTEM, blaCTX, blaSHV Jang et al. (2018)

Aminoglycosides Piscirickettsia salmonis sat1 and aadA1 Saavedra et al. (2018)

Trimethoprim

Trimethoprim Piscirickettsia salmonis dfrA1, dfrA5 and dfrA12 Shah et al. (2014)

Trimethoprim Edwardsiella tarda sul1 Algammal et al. (2022)

Amphenicols

Chloramphenicol Piscirickettsia salmonis cat2 Saavedra et al. (2018)

Florfenicol Korean fish farm effluents floR Jang et al. (2018)

Quinolones and fluoroquinolones

Quinolones Korean fish farm effluents qnrD, qnrS, aac(60)-Ib-cr Jang et al. (2018)

Quinolones Flavobacterium columnare parC and gyrA Mata et al. (2018)

Sulfonamides

Sulfamethizole Piscirickettsia salmonis sul1 and sul2 Shah et al. (2014)

BONDAD-REANTASO ET AL. 5
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• Quinolones and fluoroquinolones: Quinolones are broad-spectrum

bactericidal antibiotics that have a bicyclic core structure related to

4-quinolone.96 Fluoroquinolones are the most common quinolones

used in veterinary medicine and contain a fluorine atom in their

chemical structure. Quinolones inhibit the activity of enzymes

required for DNA replication in bacteria.96 They are the most com-

monly used class of antibiotics in aquaculture worldwide,97 with

oxolinic acid, enrofloxacin, ciprofloxacin, norfloxacin, nalidixic acid,

ofloxacin, levofloxacin, enoxacin, sarafloxacin and flumequine hav-

ing the highest usage in the major aquaculture-producing countries

between 2008 and 2018.89 In particular, oxolinic acid is widely

used in aquaculture, administered in feed.98 This antibiotic has a

low bioavailability in fish (15% in Sparidae, 25% in salmonids), but

is rapidly absorbed and eliminated. Oxolinic acid was once widely

used throughout Asia to treat vibriosis in farmed shrimp, however,

AMR has limited its usefulness.99 Flumequine is a synthetic fluoro-

quinolone effective against gram-negative bacteria in aquacul-

ture.100 This drug is cost-effective and widely used to treat various

fresh and seawater-farmed fish species, at low and high tempera-

tures. The treatment of aquatic food animals with quinolones has

been reported in several aquaculture-producing countries, and

include China,50,51 Vietnam,40 Korea,55,71 Portugal87 and

Thailand.101 Quinolones are still essential antimicrobials for the

treatment of human infections and as such should not be first-line

drugs used in veterinary medicine.

• Nitrofurans: Nitrofurans—such as furazolidone, nitrofurantoin,

nitrofurazone and furaltadone—are synthetic broad-spectrum anti-

bacterial drugs with a 5-nitro structure that interfere with several

bacterial enzymes.102 They were commonly used for the treatment

of protozoan and bacterial infections in veterinary medicine, how-

ever, since the 1990s, these drugs have been banned from use in

food animals in many countries due to their public health risk.103

Nitrofurans are still used legally or illegally in farmed animals in

some countries, which has led to rejections of exported consign-

ments with detections of these antibiotics. Recent reports of nitro-

furan use in aquaculture are as follows: China,50,51 Vietnam,40

Korea71 and Portugal.87

• Rifamycins: Rifamycins are broad-spectrum, semi-synthetic antibi-

otics that inhibit DNA-dependent RNA polymerase activity in bac-

teria.104 They are particularly effective against mycobacteriosis.

Rifamycins most often used in aquaculture include rifampicin and

rimamycin.89 However, their effectiveness in fish and shellfish is

declining, even when used in combination with tetracyclines, due

to the development of resistant bacterial strains.105 Rifamycin use

in aquaculture has been reported in the following countries:

China,50,51 the Philippines and Vietnam.89

• Sulphonamides potentiated with diaminopyrimidines (e.g., trimethoprim or

ormetoprim): Sulfonamides are a class of synthetic bacteriostatic anti-

biotics that interfere with folic acid, purine and DNA synthesis in

bacteria.94 Commonly used sulfonamides in the major aquaculture-

producing countries that include sulphadiazine, sulphamethoxazole

and sulphadimethoxine.89 Potentiated sulfonamides are combina-

tions of a sulfonamide and a diaminopyrimidine, such as

trimethoprim or ometoprim, which increases the antibacterial

potency. For example, two potentiated sulfonamides (sulphadia-

methoxine-ormetoprim and trimethoprim-sulfadiazine) are approved

for use in Canada to control bacterial diseases in salmonids.76 Sul-

fonamides are used in aquaculture around the world, with recent

reports including Chile,45,59 Israel,52 China60 and Korea.55

3 | ALTERNATIVES TO ANTIBIOTICS

With the rapid global expansion and intensification of the aquaculture

industry in recent years, there has been a concomitant increase in

aquatic disease outbreaks, challenging sustainability of production. In

view of the threat posed by injudicious and/or incorrect use of antimi-

crobial agents that can lead to the development of ARGs,106 we

review a number of alternatives to antimicrobials in aquaculture.

These include vaccination strategies, phage therapy, quorum quench-

ing, probiotics, prebiotics, chicken egg yolk antibody (IgY) and plant

therapy (Figure 2). The use of ‘clean seed’ or specific pathogen free

(SPF) stocks as a primary and essential part of a biosecurity strategy is

also discussed.

3.1 | Vaccines

Vaccines are preparations made of pathogenic microorganisms, for

example, bacteria, viruses and so forth and their metabolites, which

are artificially attenuated, inactivated or genetically modified to pre-

vent infectious diseases.107 They are recognised as critical tools for

the prevention and control of fish diseases and are considered an

essential route to the reduction in antibiotic usage within the aquacul-

ture industry.108,109 This is particularly apparent in the Norwegian

salmon farming industry; in 1987, approximately 50,000 kg of antibi-

otics were used annually, however, by 1997, following the introduc-

tion of preventive vaccination strategies, the quantity of antibiotics

used annually dropped to less than 1000–2000 kg.110,111

The fish vaccination programme was initiated in 1942 with the

first commercially available vaccine against the bacterium Aeromonas

salmonicida in Cutthroat trout (Oncorhynchus clarkii)112 and, since that

time, advances in biotechnology and immunology have led to the

development and commercialisation of many fish vaccines. Vaccina-

tion is currently used for protection against a range of bacterial and

viral diseases in aquaculture (Tables 2 and 3).113–120

Most licensed vaccines have traditionally used microorganisms

that have been inactivated or killed either through physical, chemical

or radiation processes,121 formulated with or without adjuvants122,123

and delivered by either immersion or injection routes.105 Whole-cell

inactivated vaccines are most effective against extracellular bacteria,

evoking a humoral antibody response, but intracellular bacteria evade

antibodies124 and are destroyed by cell-mediated immunity (CMI) for

which CMI vaccines are required.125,126 A stronger antibody response

and cellular memory can be achieved with the use of live vaccines,

delivered by oral or immersion routes, due to their ability to

6 BONDAD-REANTASO ET AL.
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proliferate or enter the host, eliciting both innate and adaptive immu-

nity127 and which can reduce the number of required booster immuni-

zations.105 Modified live vaccines are prepared from viruses or

bacteria that display attenuated virulence, achieved by physical or

chemical processes, serial passage in culture or culture under abnor-

mal conditions or natural low virulence towards the target spe-

cies.105,128,129 Molecular manipulations to produce genetically

modified mutants that lack virulence has also been used to induce

attenuation in vaccine candidates and this approach has been used

successfully for large DNA viruses such as herpesviruses like koi her-

pesvirus and also for bacteria, for example, Streptococcus spp. and

Edwardsiella spp.105,130

The use of polyvalent or multivalent injectable vaccines that con-

tain adjuvant and multiple antigens to protect against different dis-

eases are currently used in large-scale commercial aquaculture

operations, especially those focused on high-value species such as

Atlantic salmon (Salmo salar; Tables 2 and 3).110 In addition, autoge-

nous vaccines, created from site-specific, isolated pathogens of inter-

est, offer cost-effectiveness and more flexibility in production, speed

of delivery and implementation in the face of a disease outbreak.119

Modern, alternative technological approaches to vaccine manu-

facture that target specific pathogen components, that is, subunit,

recombinant technology or DNA/RNA particle vaccines, appear to

induce an even greater level of immunity. Subunit vaccines use only

the antigenic component for vaccination, thus removing the risk of

replication in the host, non-target host or environment.131 Immuno-

genic components can be isolated and purified directly from the target

pathogen, or specific immunogenic proteins can be manufactured

using recombinant expression vectors, for example, an Escherichia coli

expression system is used to produce plasmids carrying genes that

encode specific protective antigens, and has been used successfully

against infectious pancreatic necrosis (IPN) in salmonids in

Norway.105 They can be freeze-dried, allowing for non-refrigerated

transport and storage,131,132 however, due to their limited number of

antigenic components, they can stimulate a weaker immune

response,105 require effective adjuvants and multiple booster

immunizations,132 and are expensive to produce.133 Virus-like parti-

cles (VLP) are components of advance subunit vaccines and are

formed from the self-assembly of viral capsid proteins into particles

that mimic the natural structure of the virus.134 They can potentiate

both adaptive and innate immune responses and offer the advantage

of lacking genomic material, thus preventing replication in the

host.135,136 Interest in this technology has increased over the past

decade and VLP vaccines have been shown to work experimentally

against certain fish diseases.

In recent years, several nucleic acid vaccines have been devel-

oped for use in aquaculture and appear to elicit a strong cellular and

humoral immunity. They consist of DNA or RNA encoding antigen(s)

of interest and are relatively easy to manufacture and safe to adminis-

ter and are cost competitive.105,137 DNA vaccines can be produced in

F IGURE 2 Alternative approaches to reduce the use of antimicrobials in aquaculture, for example, vaccines, bacteriophages, quorum

quenching, bacteriocins, chicken egg yolk immunoglobulin, medicinal plants and microbiomes.

BONDAD-REANTASO ET AL. 7
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TABLE 2 Commercially available vaccines against major infectious bacterial diseases of finfish

Target disease Target pathogen Target fish species Type of vaccine Product name

Route of

administration

Monovalent

Bacterial kidney

disease (BKD)

Renibacterium

salmoninarum

Salmonids Arthrobacter davidanieli,

live culture

Elanco: Renogen Injection

Edwardsiellosis/

Enteric septicaemia

of catfish (ESC)

Edwardsiella ictaluri Catfish spp., that is, channel

catfish, freshwater catfish,

striped catfish, brown

bullhead, Danio spp.

Edwardsiella ictaluri,

avirulent live culture

MSD Animal Health:

AquaVac-ESC™

Immersion

E. ictaluri Pangasius Edwardsiella ictaluri,

inactivated live culture

Pharmaq: ALPHAJECT

Panga 1 and 2

Injection

Flavobacteriosis/

rainbow trout fry

syndrome/

Columnaris disease

Flavobacterium

columnare

Cyprinids, salmonids, catfish

carp, trout, perch, tilapia

Flavobacterium columnare,

attenuated bacterin

FryVacc1 and 2 Immersion

F. columnare Catfish, largemouth bass Flavobacterium columnare,

avirulent, live culture

MSD Animal Health:

AquaVac-Col™

Immersion

Furunculosis Aeromonas

salmonicida

Salmonids, flounder, turbot,

carp, tilapia, sole

Aeromonas salmonicida,

inactivated bacterin

Elanco: Furogen Dip Injection

A. salmonicida Salmonids Iron-regulated outer

membrane protein

(IROMP) antigens of 2

strains of Aeromonas

salmonicida, non-

mineral oil based

MSD Animal Health:

AquaVac® FNM

Injection

A. salmonicida Salmonids Aeromonas salmonicida Pharmaq: AlphaJect 1200 Injection

Lactococcosis Lactococcus garvieae Salmonids, European sea

bass, gilthead sea bream,

Seriola spp., yellowtail,

(hiramasa), amberjack

Lactococcus garvieae,

inactivated

MSD Animal Health:

Amalin™ Rensa

Oral

L. garvieae Rainbow trout Lactococcus trucha,

inactivated

Hipra: ICTHIOVAC® LG Injection

Pasteurellosis Photobacterium.

damselae spp.

piscicida

European sea bass and

gilthead seabream

Photobacterium piscida,

inactivated

MSD Animal Health:

AquaVac Photobac

Prime™

Immersion

P. damselae spp.

piscicida

Gilthead seabream Photobacterium piscida,

inactivated

Hipra: ICTHIOVAC® PD Immersion

Streptococcosis Streptococcus

agalactiae

Grouper, salmonids, turbot,

flounder, sturgeon,

Streptococcus agalactiae

biotype 2 bacterin,

inactivated, oil

adjuvant

MSD Animal Health:

AquaVac® Strep Sa;

AquaVac® Strep Sa1

Injection

Amberjack, yellow tail, red

porgy, barramundi,

rabbitfish, seabass,

seabream, hybrid striped

bass, catfish, mullet,

pomfret, tilapia, koi, carp

S. iniae Warm-water marine and

freshwater finfish

Streptococcus iniae,

inactivated

MSD Animal Health:

AquaVac® Strep Si

Injection

S. iniae Turbot Streptococcus iniae,

inactivated

Hipra: ICTHIOVAC® STR Injection

Vibriosis Vibrio anguillarum, V.

ordalii

rainbow trout, European

seabass

(Listonella) Vibrio

anguillarum (biotype I

and II), V. ordalii,

inactivated

MSD Animal Health;

AquaVAC® Vibrio

Injection

V. anguillarum, V.

ordalii

Rainbow trout, European

seabass

V. anguillarum 01 and 02a

(V. ordalii), inactivated

MSD Animal Health:

AQUAVAC® Vibrio

Oral

Oral

8 BONDAD-REANTASO ET AL.
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TABLE 2 (Continued)

Target disease Target pathogen Target fish species Type of vaccine Product name

Route of

administration

Yersiniosis/Enteric

redmouth (ERM)

Yersinia ruckeri Rainbow trout Yersinia ruckeri

(Hagerman strain),

inactivated

MSD Animal Health:

AquaVac® ER;

AquaVac® ERM Oral

Immersion/oral

Y. ruckeri Rainbow trout Y. ruckeri biotype 1 and

biotype 2 (Hagerman

type 1 and EX5

biogroup), inactivated

MSD Animal Health:

AQUAVAC® RELERA™

Immersion/oral

Tenacibaculosis Tenacibaculum

maritimum

Turbot T. maritimum, inactivated Hipra: ICTHIOVAC®TM Injection

Multivalent

Vibriosis and

Pasteurellosis

Photobacterium

damselae subs.

piscicida, Listonella

anguillarum

serotype O1, L.

anguillarum

serotype O2a, L.

anguillarum

serotype O2b

European seabass Photobacterium damselae

subs. piscicida,

Listonella anguillarum

serotype O1, L.

anguillarum serotype

O2a and L. anguillarum

serotype O2b,

inactivated

Hipra: ICTHIOVAC VR®/

PD

Injection

Lactococcosis,

Pseudotuberculosis

and Vibriosis

Lactococcus garviae,

Photobacterium

damselae sp.

Piscicida, Vibrio

anguillarum

Yellowtail, amberjack Lactococcus garviae,

Photobacterium

damselae sp. piscicida

and Vibrio anguillarum,

inactivated oil adjuvant

MSD Animal Health:

NORVAX® PLV 3-way

Oil

Injection

Vibriosis and

Pasteurellosis

Photobacterium

damselae subsp.

piscicida

European seabass Listonella anguillarum (01)

and Photobacterium

damselae subsp.

piscicida, inactivated

Pharmaq Fishteq: ALPHA

JECT 2000

Injection

Pasteurellosis,

Streptococcosis

Photobacterium

damselae,

Lactococcus garviae

Yellowtail, amberjack Photobacterium damselae

and Lactococcus

garviae, inactivated oil

adjuvant

MSD Animal Health:

NORVAX® Ruiketsu

Rensa Oil

Injection

Furunculosis, classical

Vibriosis, cold-water

Listonella (Vibrio)

anguillarum,

Atlantic salmon Listonella (Vibrio)

anguillarum serovar O1,

L.

MSD Animal Health:

Norvax® Minova 6

Injection

Vibriosis, wound or

winter ulcer disease

and infectious

pancreatic necrosis

(IPN)

Aeromonas

salmonicida

subsp.,

Salmonicida,

Vibrio

salmonicida,

Moritella viscosa,

Infectious

pancreatic

necrosis virus

(IPNV)

(Vibrio) anguillarum

serovar O2, Aeromonas

salmonicida subsp

salmonicida, Vibrio

salmonicida, Moritella

viscosa and surface

protein from IPN virus

serotype spp.,

inactivated

Vibriosis,

Pasteurellosis

Photobacterium

damselae, Vibrio

anguillarum, V.

ordalii

European seabass Vibrio anguillarum

(biotype I and II), V.

ordalii and

Photobacterium

damselae (subsp

piscicida), inactivated

MSD Animal Health:

QUAVAC® Vibrio

Pasteurella

Injection

Infectious salmon

anaemia (ISA),

Furunculosis,

Vibriosis

Aeromonas

salmonicida, Vibrio

anguillarum, V.

ordalii

Salmonids Aeromonas salmonicida,

Vibrio anguillarum

serotypes I and II, V.

ordalii and V.

salmonicida serotypes I

and II, inactivated

Forte V II Injection

(Continues)
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bacterial cells that contain an expression plasmid that carries a specific

gene coding for a selected antigenic protein and multivalent vaccines

can be produced providing cross-protection by the use of gene coding

for multiple antigens in the plasmid design.138,139 A DNA vaccine

against infectious haematopoietic necrosis virus (IHNV) is licensed

and commercialised in Canada (Apex-IHN; Table 3). RNA-based vac-

cines can be either conventional, non-amplifying mRNA or self-

amplifying mRNA and offer much promise in both humans and

animals,140,141 having demonstrated efficacy in stimulating antigen-

specific immune responses in a broad range of host cells when com-

pared to conventional plasmid DNA vaccines.142

3.2 | Bacteriophages

Bacteriophages or phages are bacterial viruses that invade bacterial cells

and, in the case of lytic phages, disrupt bacterial metabolism and cause

the bacterium to lyse.143 With their initial discovery by Twort and

d'Herelle in the early 1900s,144 bacteriophages were seen as the solu-

tion to controlling or eradicating bacterial diseases, but interest declined

following the discovery of antibiotics. With the emergence of genetic

resistance to antibiotics, phage therapy is gaining interest again.145,146

Phages are globally the most abundant microorganisms,147,148 particu-

larly in marine and freshwater environments,149,150 in which they can

survive more than 5–7 months and several weeks, respectively. Marine

species occur at near surface to deep benthic environments, down to

the deep-sea floor with their distribution in the water column matching

that of their hosts.151,152 Despite the abundance of phages in marine

environments, genetically identical phages occur over vast distances,153

such as between Europe, Chile and the USA,153–156 for decades,157

although there may be some regional differences.155

In general, phage survival is not affected by pH, salinity, tempera-

ture or organic matter concentration,150 although E. coli phages may

be affected by a combination of salinity and organic matter.158 Bacte-

riophages can also exist as prophages integrated into the DNA of the

host or as replicons, such as Vibrio spp.151,154,156 Prophages may or

may not be associated with lysogeny,156,159 which may vary according

to geographic regions,155 and with depth of marine species.152 Phages

infect many species of bacterial pathogens of fish (Table 4).160

Phage therapy has been successfully used to control bacterial infec-

tions in aquatic animals,161–173 but multiple phage therapy has proven to

be more successful than single phage therapy.149,168,174–179 There are

many reports of phage therapy used against the bacterial genera

Vibrionaceae, which are abundant in the aquatic environment and are the

most common bacterial genera that cause disease in aquatic organ-

isms.70,180–182 Phages may be used to control the most destructive bacte-

ria; for example, Vibrio harveyi,159,178,183–186 V. parahaemolyticus,164,178,187

V. anguillarum,151,156,157,166,172,178,181,188,189 V. alginolyticus168,178 and

V. splendidus which infects molluscs, crustaceans, echinoderms and

fish.176,190

However, the interaction of phages with their hosts is

complex,191–195 with both existing as strains of varying virulence with

gene transfer between them,181,191,192 affecting both their genetic traits

and the host:phage relationship.8,174,181 Bacterial hosts may contain

prophage encoded virulence factors,151,181 which alter the virulence of

the host, either increasing or diminishing virulence,151,159,196,197 thus

allowing phages to be used for anti-virulence therapy.198 The develop-

ment of resistance to phage infection,147,148,153,191,199–201 may result in

the development of bacterial-resistant strains.148,199 Consequently,

phages diversify genetically to overcome bacterial defences, such as

adsorption inhibition, restriction-modification, CRISPR-Cas (clustered

regularly interspaced short palindromic repeats-CRISPR-associated pro-

teins) systems, abortive infection and increased phage infectivity and

host range, which are also associated with expansion of phage genome

size.147,191,194,202 Co-evolution may be common in host:phage relation-

ships.174,194 Bacterial resistance to one phage may result in susceptibil-

ity to others,153 but some phages are broadly pathogenic.172,203 Some

phages and their hosts may have a mutualistic relationship, perhaps

explaining their global distribution.156 Therapies with phages in aquacul-

ture do represent an alternative to the traditional pharmacology treat-

ment and there are already some commercial phage-based products

available, in particular, to target Vibrio spp., however, this treatment

modality will require further research before common use in

aquaculture.204

3.3 | Quorum quenching

Quorum quenching (QQ) relates to all processes involved in the dis-

turbance of quorum sensing (QS) which refers to the capacity of bac-

teria to monitor their population density and regulate gene expression

accordingly.205 Numerous bacteria can use QS signals to coordinate

and synchronise several behaviours under differing environments,

including microbe–microbe and host–microbe interactions. Quorum

quenching encompasses very diverse phenomena and mechanisms,

and QQ molecular actors are also diverse in nature, that is, enzymes,

TABLE 2 (Continued)

Target disease Target pathogen Target fish species Type of vaccine Product name

Route of

administration

Vibriosis, ISA, Wound

disease

Vibrio anguillarum, V.

salmonicida,

Aeromonas

salmonicida subsp.

salmonicida

Salmonids Vibrio anguillarum,

serotypes O1 and O2α,
V. salmonicida and

Aeromonas salmonicida

subsp. salmonicida,

inactivated

Pharmaq: AlphaJect 5200 Injection

10 BONDAD-REANTASO ET AL.
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chemical compounds, mode of action, that is, QS-signal cleavage,

competitive inhibition and so forth. All the main steps of the QS path-

way, including synthesis, diffusion, accumulation and perception of

the QS signals, may be affected. Hence, QS disruption is a field that is

being developed and used for biocontrol of bacterial diseases in some

fields such as aquaculture, crop production and anti-biofouling.206

Bacteria attached to a surface may proliferate and exist as bio-

films, embedded in a hydrogel matrix,9,188,207,208 in which they are

more resistant to antibiotics than conspecific planktonic forms.208,209

Within biofilms, bacteria communicate by QS, a method of

communication-related to cell density and species composition, using

small diffusible signalling molecules, called autoinducers, which acti-

vate genes controlling several functions, including biofilm formation,

virulence, bioluminescence, invasion and spread.189,198,200,210–214

Autoinducers include acyl-homoserine lactones (AHLs), auto-inducing

oligo-peptides (AIPs) and autoinducer 2.211,212,215 Certain compounds

can inhibit AHL synthesis, degrade AHLs or inhibit AHL/receptor

interaction and as a consequence, prevent pathogenic bacteria from

producing virulence factors, forming biofilms and reducing viru-

lence.211 The understanding that blocking QS would stop the gene

expression controlling virulence, disease and the microbial environ-

ment has led to research into blocking QS, commonly termed as

QQ.209–211,216–222

3.4 | Bacteriocins

Bacteriocins, bioactive compounds produced by bacteria, have been

proposed as a sustainable and promising alternative strategy to the

use of antibiotics in the aquaculture industry.223 They are ribosome

TABLE 3 Commercially available vaccines against major infectious viral diseases of finfish

Target disease Target pathogen Target fish species Type of vaccine Product name

Route of

administration

Monovalent

Infectious

haematopoietic

necrosis (IHN)

Infectious

haematopoietic

necrosis virus (IHNV)

Rhabdovirus

Salmonids DNA vaccine Elanco: Apex-IHN

(Canada)

Injection

Infectious pancreatic

necrosis (IPN)

Infectious pancreatic

necrosis virus (IPNV)

Birnavirus

Atlantic salmon VP2 and VP3 subunit

proteins

MSD Animal Health:

AQUAVAC® IPN Oral

Oral

Pancreatic disease (PD)

virus/Salmonid

alphavirus (SAV)/

Salmon pancreas

disease

SAV alphaviruses Salmonids Inactivated SAV F93-125 MSD Animal Health:

Norvax® Compact PD

Injection

SAV alphaviruses Salmonids Inactivated strain AL V405 MSD Animal Health:

Alpha Ject Micro 1 Pd

Injection

Koi herpesvirus (KHV)

disease

KHV Herpesvirus Koi carp Live, attenuated viral vaccine Kovax Ltd., Israel: KV-3 Immersion

or injection

Infectious spleen and

kidney necrosis

(ISKNV)

ISKNV Iridovirus Asian seabass,

grouper, pompano

Japanese yellowtail

Inactivated ISKNV MSD Animal Health:

AQUAVAC®IridoV

Injection

Viral Nervous Necrosis

(VNN)

Betanodavirus European sea bass Inactivated Betanodavirus

strain

Hipra: ICTHIOVAC®

VNN

Injection

Multivalent

Infectious Salmon

Anaemia (ISA),

Furunculosis, Vibriosis

Infectious salmon anaemia

virus (ISAV), Aeromonas

salmonicida, Vibrio

anguillarum, V. ordalii

Salmonids Infectious Salmon Anaemia

virus (ISAV), Aeromonas

salmonicida, Vibrio

anguillarum serotypes I and

II, V. ordalii and V.

salmonicida serotypes I and

II, inactivated

Forte V II Injection

Furunculosis, classical

Vibriosis, cold-water

Vibriosis, wound or

winter ulcer disease

and infectious

pancreatic necrosis

(IPN)

Listonella (Vibrio)

anguillarum, Aeromonas

salmonicida subsp

salmonicida, Vibrio

salmonicida, Moritella

viscosa, Infectious

pancreatic necrosis virus

(IPNV)

Salmonids Listonella (Vibrio) Anguillarum

serovar O1, Listonella

(Vibrio) anguillarum serovar

O2, Aeromonas salmonicida

subsp salm onicida, Vibrio

salmonicida, Moritella

viscosa and surface protein

from IPN virus serotype

spp., inactivated

MSD Animal Health:

Norvax® Minova 6

Injection

BONDAD-REANTASO ET AL. 11
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TABLE 4 Bacteriophages, their bacterial hosts and source related to aquatic pathogens

Bacteriophage Bacterial host Isolated from Reference

V1G, V1P1 and V1P2 Vibrio spp. CV1 Shrimp Barbosa et al. (2013)

VOB Infective in Vibrio harveyi and V.

campbellii

V. owensii Busico-Salcedo and Owens (2013)

Bacteriophage YC (Myoviridae) Vibrio coralliilyticus P1 (LMG23696) Coral Cohen et al. (2013)

Bacteriophage (Myoviridae and

Siphoviridae)

Vibrio harveyi, V. campbellii, V.

rotiferianus and V.

parahaemolyticus

Shrimp farm effluent Crothers-Stomps et al. (2006)

Vibrio phage vB_VorS-PVo5

(Siphoviridae)

Vibrio ordalii Purple mussel (Perumytilus

purpuratus)

Echeverria-Vega et al. (2016)

WP-1, WWP-2 and SP-2

(Podoviridae)

Lactococcus garvieae Unknown Ghasemi et al. (2011)

Three types Vibrio anguillarum and V. ordalii (not

V. parahaemolyticus)

Atlantic salmon (Salmo salar) Higuera et al. (2013)

Vibriophage, KVP40 78 Vibrio and 1 Photobacterium sp. Unknown Inoue et al. (1995)

Bacteriophage (phage), pVp-1 Vibrio parahaemolyticus Oysters Jun et al. (2014)

Bacteriophage pAh6-C Aeromonas hydrophila Korean river water Jun et al. (2015)

Bacteriophages φSt2 and φGrn1 Vibrio alginolyticus Gilt-head bream (Sparus aurata) Kalatzis et al. (2016)

Isolation as a cocktail Pseudomonas spp., Vibrio harveyi and

V. parahaemolyticus

Green sea turtle (Chelonia mydas) Delli et al. (2017)

VR1, VR2 and VR3 variable

regions

Vibrio anguillarum Aquaculture and environment, vast

geographical sites

Kalatzis et al. (2017)

4 bacteriophages, 2 Siphoviridae Vibrio harveyi Oysters, shrimp hatchery water Karunasagar et al. (2007)

vB_VspP_pVa5, N4-like lytic

bacteriophage

Vibrio splendidus Aquaculture farm Katharios et al. (2017)

Aeromonas phage PAS-1 Aeromonas salmonicida Rainbow trout (Oncorhynchus

mykiss)

Kim et al. (2015)

VhKM4 (Myoviridae) Vibrio harveyi and V.

parahaemolyticus

Tropical fish aquaculture Lai et al. (2017)

VpKK5 (Siphoviridae) Vibrio parahaemolyticus Unknown Lal et al. (2016)

vB_VspS_VS-ABTNL-1 (PVS-1),

vB_VspS_VS-ABTNL-2 (PVS-2),

vB_VspS_VS-ABTNL-3 (PVS-3)

Vibrio splendidus Sea cucumber (Apostichopus

japonicus)

Li et al. (2016a)

vB_VcyS_Vc1 (Vibrio phage Vc1) Vibro cyclitrophicus Sea cucumber Li et al. (2016b)

A3S and Vpms1 Penaeus vannamei Unknown Lomelí-Ortega et al. (2014)

VP-1, VP-2 and VP-3 Vibrio parahaemolyticus Unknown Mateus et al. (2014)

Vibriophage KVP40 Vibrio parahaemolyticus, 8 Vibrio and

1 Photobacterium sp.

Seawater Matsuzaki et al. (1992)

Phi S(M) and Phi S(T) Cellulophaga baltica MM#3 Unknown Nilsson et al. (2020)

VHML (Myoviridae) Vibrio harveyi Moribund farmed whiteleg shrimp

(Penaeus. vannamei)

Oakey and Owens (2000)

PPp-W4 (Podoviridae), PPpW-3

(Myoviridae)

Pseudomonas plecoglossicida Ayu (Plecoglossus altivelis) Park and Nakai (2003)

VHP6b Siphoviridae Vibrio harveyi Oysters and clams Raghu Patil et al. (2014)

VPp1 Vibrio parahaemolyticus Oysters under depuration Rong et al. (2014)

Vibriophage KVP40 Vibrio anguillarum Atlantic cod (Gadus morhua), Turbot

(Scophthalmus maximus)

Rørbo et al. (2018)

VHM1 and VHM2 (Myoviridae),

VHS1 (Siphoviridae)

Vibrio harveyi (growth inhibition), V.

parahaemolyticus and V.

alginolyticus

Aquaculture environments Stalin and Srinivasan (2017)

ΦH20 (Siphoviridae) and KVP40

(Myoviridae)

Vibrio anguillarum BA35 and V.

anguillarum PF430-3

In vitro Tan et al. (2015a)
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synthesised, low molecular weight bactericidal peptides, encoded

either in chromosome or extrachromosomal elements, usually 20–60

amino acids in length.224,225 They have antimicrobial properties due

to their ability to inhibit or kill both closely or distantly related

microorganisms.226–228 Their benefits include being eco-friendly, bio-

degradable, non-lethal to host or environment while still being antago-

nistic to harmful gut pathogens and promoting beneficial

bacteria.40,229–232 Studies on the gut microbiota of vertebrates have

identified beneficial bacteriocins,233–235 including those in

fish.229,231,232,236–246

3.5 | Probiotics and prebiotics, synbiotics,
parabiotics and postbiotics

In recent years, some publications have pointed out the importance of

maintaining a healthy and stable gut microbiome in fish and shellfish

to reduce the risks of disease occurrence.247 This is essential to opti-

mise nutrient digestion and minimise stress in rearing conditions. A

disturbed microbiome has frequently been related to a disease condi-

tion, and is considered by some scientists as an interesting biomarker

to detect a pathological problem.248 Some bacterial species are found

dominant in healthy animals, while in infected animals, occurrence of

other species increase drastically, suggesting that diseased animals

have difficulties to control their digestive microbiota, which then

becomes more influenced by environmental factors and stress. For

example, Faecalibacterium prausnitzii and Pantoea agglomerans, were

found in healthy cultured shrimp, while diseased shrimp had different

bacterial communities, including Aeromonas taiwanensis, Simiduia agar-

ivorans and Photobacterium angustum,249 therefore, confirming previ-

ous observations.248 Similarly, some farmed fish species might

succumb to infection due to poor quality of microbiome in their gut

system.250 It was also reported that while a beneficial gut microbiome

does not cause any diseases or disorders in host organisms, a distur-

bance in the balance of microbial community can induce a higher

prevalence of harmful pathogens, which can trigger infections and

diseases.251–254 For example, it was found that the population density

of Aeromonas bacteria was higher in abundance in diseased affected

fish samples when compared to healthy individuals, which indicates

that in healthy fish the pathogenic expression of the Aeromonas was

totally prevented due to the presence of healthy microbiome.176

Microbiomes can be influenced by diets, for example, proportions of

fishmeal, protein, lipid and energy levels,255 and by specific

nutrients,256 or by medicinal plant extracts, which can notably display

anti-bacterial or immunostimulant activities.257,258

Probiotics are the most commonly and commercially available

way used worldwide to positively influence microbiomes. They are

live, non-pathogenic microorganisms administered to improve micro-

bial balance, particularly in the gastrointestinal tract. They consist of

various microorganisms, notably yeast or bacteria, such as Lactobacil-

lus and Bifidobacterium species, and are administered as dietary sup-

plements in foods.259 Probiotics have demonstrated efficacy in

preventing and treating various medical conditions, particularly those

involving the gut. Probiotics exert their beneficial effects through vari-

ous mechanisms. They usually promote health conditions by inhibiting

harmful bacteria. Basic probiotic modes of action in the aquatic animal

gut include inhibition of pathogen adhesion; production of antimicro-

bial components, including bacteriocins and defensins; competitive

exclusion of pathogenic microorganisms; enhancement of barrier

function; reduction in luminal pH; and modulation of the immune sys-

tem. For example, lowering intestinal pH induces a decreasing coloni-

sation and invasion by pathogenic organisms and is modifying the

host immune response.260

Probiotics can also be beneficial to aquatic animals by synthesis-

ing and providing essential nutrients, regardless of their location,

either in the digestive tract, in the water column or sediments. These

include polyunsaturated fatty acids261 and also some vitamins such as

vitamin B12.262 Other probiotics, in particular those belonging to

Bacillus genus, are used to improve the rearing environment, in partic-

ular, by assimilating organic pollutants (ammonia, nitrites, etc.), which

might otherwise accumulate and induce stress and toxicity to farmed

aquatic animals. Moreover, by competing with opportunistic patho-

gens for access to these nutrients, those probiotics which occupy the

same ecosystem as these bacterial pathogens, consequently prevent

them from reaching critical levels above which they can become

harmful for aquatic animals, as this is the case for several species of

Vibrio spp.

Particularly beneficial probiotics promoting disease resistance in

aquatic animals include:

• Lactic acid bacteria (LAB),233,240,243,263,264 such as Lactobacillus

spp.264–284

• Phaeobacter spp.285–287

• Bacillus spp.277,280,288–306

TABLE 4 (Continued)

Bacteriophage Bacterial host Isolated from Reference

KVP40 Vibrio anguillarum PF430-3 In vitro Tan et al. (2015b)

11 vibriophages 24 V. anguillarum strains and 13

Vibrio spp.

In vitro Tan et al. (2014)

PLgW-1, PLgY-16, PLgY-30

(Siphoviridae)

Lactococcus garvieae Marine fish Hoai et al. (2018)

Phi S(M), Phi S(T) Cellulophaga baltica MM#3 Unknown Middelboe et al. (2009)
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Besides resistance to diseases,277,280–282,298–305,307–311 some probio-

tics improve digestion,277 water quality277 and growth in

fish.269,277,280–282,300,302,303,307,309,311

Prebiotics are non-viable food ingredients, usually oligosaccha-

rides, a family of carbohydrates non-digestible to the host, but which

are digestible to specific bacterial populations residing in the gut, and

therefore act as selective substrates for bacterial fermentation to only

promote beneficial intestinal bacteria.312 This modification of the

microbiome then induces specific changes, both in the composition

and/or activity in the intestinal microflora, that confers benefits upon

host well-being and health.313 Microflora of the gut can be optimised

through dietary modulation by prebiotics that stimulates the number

and/or activity of bifidobacteria and lactobacilli, which can increase

host resistance to pathogenic bacteria and stimulation of the immune

response.314

The beneficial effects of probiotic bacteria may be increased by

the use of prebiotics, and synbiotics, which are a combination of pro-

biotics and prebiotics.233,315 They include indigestible fibre that

enhances beneficial commensal gut bacteria.236,246,281,316–319 Their

beneficial effects are due to by-products derived from the fermenta-

tion of intestinal commensal bacteria and include modulation of the

immune system and its ability to stimulate systemic and local immu-

nity278 through the action of immunosaccharides on the innate

immune system of fish and shellfish.316

New evidence revealed that parabiotics (i.e., dead cells of probio-

tics, also named as ghost probiotics) and postbiotics (i.e., supernatants

from probiotic cultures, containing soluble factors or metabolic by-

products secreted by bacteria) also have an important impact on

microbiome and disease occurrence.312 Moreover, new metagenomic

techniques, notably next-generation sequencing (NGS) technology

gives opportunity to identify many more bacterial species in the

microbiomes, including non-culturable species, which were previously

totally undetected.247 These discoveries open whole new fields of

research to better understand the factors influencing microbiomes,320

giving more opportunities to find credible alternatives to antibiotics,

better control and stabilise microbiomes and thus improve health of

aquatic organisms.

3.6 | Chicken egg yolk immunoglobulin

Chicken egg yolk immunoglobulin (IgY) is a useful antibody for passive

immunisation due to the fact that high titers of pathogen-specific IgY

are produced after immunisation of hens and simple methods have

been developed for IgY extraction from egg yolk. Chicken egg yolk

immunoglobulin has been successfully used in humans, livestock ani-

mals and aquatic animals. One of the major characteristics of IgY is

that, compared with immunoglobulin G (IgG), it is more stable, less

expensive to make in high yields and exhibits minimal conformational

changes, hence is more cost-effective for use for a diverse range of

purposes.321,322

Chicken egg yolk immunoglobulin has been found to have effec-

tive therapeutic value in controlling various bacterial and viral

pathogens in fish and other aquatic animals,323 for example, IgY has

been used for the treatment of diseases like White Spot Disease

(WSD), a viral disease of shrimps and crayfish; Vibrio harveyi infection

in Indian white shrimp (Fenneropenaeus indicus)324; V. anguillarum and

Yersinia ruckeri in rainbow trout (Oncorhynchus mykiss); V. splendens in

sea cucumber (Apostichopus japonicas)177,325; Aeromonas hydrophila in

polyploid gibel carp (Carassius auratus gibelio) and Wuchang bream

(Megalobrama amblycephala)326; A. salmonicida in koi carp (Cyprinus

carpio koi)327; and Edwardsiellosis in Japanese eel (Anguilla japonica)328

and small abalone (Haliotis diversicolor supertexta).329

Chicken egg yolk immunoglobulin can be administered in several

forms including purified egg yolk IgY,330 one-step aqueous extract of

egg yolk331 or whole egg yolk powder327 from vaccinated chickens.

However, the most studied form is the purified egg yolk IgY. It can be

administered through a variety of different routes, that is, intra-

peritoneal injection, immersion or oral administration and can provide

protection for fish against diseases through passive immunisation.

Efficacy in conferring protection was confirmed in rainbow trout fol-

lowing a single intraperitoneal injection of anti-V. anguillarum IgY331

and protective effects of IgY were achieved in sea cucumber by intra-

peritoneal injection of anti-V. splendidus IgY antibodies or immersing

the sea cucumber (A. japonicas) in aqueous IgY.177 The application of

IgY against V. parahaemolyticus is reported to improve the survival

rate of whiteleg shrimp (Penaeus vannamei) without affecting the

water quality and consecutive immersions of fish into rearing water

containing specific IgY antibodies, completely prevented ulcer disease

outbreaks caused by A. salmonicida in koi carp during a cohabitation

infection challenge.327 These indicate the therapeutic value of IgY

antibodies by immersion treatment in the prevention of diseases

caused by pathogens that invade the skin and gills in aquaculture ani-

mals. In addition, oral IgY antibodies offer promising potential for pas-

sive immunisation strategies. The oral application of specific egg yolk

antibody powders (encapsulated) provided protection against vibriosis

in whiteleg shrimp (P. vannamei) at different developmental stages.332

In another study, fish that received IgY in their diet had substantial

IgY levels in the serum, and feeding of specific anti-V. anguillarum IgY

enhanced resistance of rainbow trout to vibriosis.331 This indicated

that IgY can be absorbed into the blood system through the gastroin-

testinal tract of rainbow trout. It has also been reported that IgY was

significantly absorbed in agastric carp after feeding, while plasma IgY

concentration of gastric rainbow trout could not be detected.330

3.7 | Medicinal plants

In recent years, medicinal plants and their derivatives have received

considerable attention as alternatives to antibiotics.333,334 immuno-

prophylactics or immunostimulants.258,335 There is considerable inter-

est in their application due to their ease of preparation, low cost,

lower risk of side effects and environmental impacts, as reflected in

the current wealth of available scientific literature concerning the

development and application of medicinal plants in aquaculture (see

review of Tadese 2021335).
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Medicinal plants may include herbs, spices, seaweeds, herbal

extracted compounds, traditional Chinese medicines and commercial

plant-derived products258 and their active ingredients include second-

ary metabolites, for example, phenolics, essential oils, pigments, alka-

loids, terpenoids, tannins, polypeptides and polysaccharides, steroids

and flavonoids.336 Herbal plants contain antimicrobial substances that

can fight a wide range of bacteria responsible for aquatic animal

diseases.337–354

In addition, many plant-derived products are also effective at

stimulating both the innate or specific immune response and the non-

specific immune response in aquatic animal hosts to increase resis-

tance to pathogens.257,355–365 Many immunostimulants are composed

of microbial cell wall or outer membrane with molecular patterns that

are recognised by the innate immune system of the host (i.e., glucans,

lipopolysaccharides, chitin, chitosan, peptidoglycans). The innate

immune response involves a cascade of reactions that activates cells

to identify and remove microbial pathogens in the host. The majority

of commercial immunostimulants contain β-glucans (β-1,3 and β-1,6),

alginates and polysaccharides produced from yeast and seaweeds,

respectively366; these immunostimulants are typically delivered via

feed or bath immersion for larval stages and via feed for grow-out

stages.

4 | DISCUSSION

A number of factors can determine the best alternatives to antibiotics

to be used within an aquaculture system.367,368 It is well acknowl-

edged that vaccination strategies are an integral part of fish health

management programmes. However, while advances in vaccine devel-

opment have been promising, actual implementation has been limited

due to the practical and logistical challenges of mass vaccination in a

commercial setting as well as cost-effectiveness and, generally, only

high-value finfish species are vaccinated.115

World aquaculture production of farmed aquatic animals has

grown, on average, by 5.3% per year in the period 2001–20182 and

aquaculture is currently the fastest growing of the animal food-

producing sectors. Currently, Southeast Asia is considered to be the

hub of aquaculture due to its suitability for productive inland and

coastal aquaculture; between 2015 and 2019, Southeast Asia's total

production from aquaculture steadily increased by about 1.1% per

year and in 2019 the region's total production from aquaculture

accounted for about 54.0% of the region's total fishery production in

terms of volume.369 However, vaccination against commercially

important aquaculture pathogens in Asia is rare, due possibly to the

cost-effectiveness of use for farmed low-value freshwater finfish spe-

cies (e.g., tilapia, rohu, common carp, hybrid and striped catfish), and

also the lack of knowledge regarding epidemiology of diseases, patho-

gen characterisation and pathogenic mechanisms.370 In addition, chal-

lenges exist in the implementation of the use of commercially

available vaccines against commonly occurring diseases due to varia-

tions in vaccine registration processes within Asian countries.370 In

this case, the use of ‘rapid’ autogenous vaccines could potentially

provide a solution, as could be the trend towards the use of effica-

cious and inexpensive immersion vaccines, which can facilitate mass

vaccination in the field for low value species.

Existing delivery routes of the vaccine include immersion, paren-

teral, that is, intra-peritoneal (i.p.) and oral. Immersion vaccines, where

the antigens are taken up by the skin, gills or gut, are suitable for mass

vaccination of fish that are too small for parenteral vaccine. Although

this method is less costly and time-consuming, uptake and efficacy,

however, can vary depending on the age or size of the fish, vaccine

dose and duration, adjuvant performance, temperature and so forth.

The oral route, less stressful than parenteral delivery, potentially

offers the best approach to fish immunisation due to its ease of

administration, and can be used with both small and larger-sized fish.

However, there are few commercial oral vaccines currently available

due mainly to lack of efficacy and also the logistic and cost-associated

challenges related to the production of the required large quantities

of antigen.371 In addition, a lack of knowledge on the impact of the

stomach environment on antigen presentation is also a constraint372

and future research should focus on increasing understanding of sites

of immune induction within the intestinal tract.

Encapsulation or the incorporation of material into small capsules

is an interesting approach for antigen delivery via the oral route, pro-

tecting against degradation in the stomach. Alginate particles have

shown promising results for DNA plasmids, for example, chitosan for

oral delivery of a DNA vaccine against Vibrio anguillarum373 and

V. parahaemolyticus,374 both in Asian sea bass (Lates calcarifer); how-

ever, unknowns regarding the biological impact of nanoparticles on

cell function currently causes some concern.375,376 More recently

there has been some interest in the use of plants as antigen produc-

tion systems, that is, the use of microalgae,377 whole plants or in vitro

cultured plant cells/tissues, due to the advantages such as ease of

scaling up, reduced production costs and good safety margins.358,378

Commercial vaccines are only available for bacterial or viral infec-

tions and the challenge of vaccine development against important para-

sites, for example, myxozoans, protozoans, crustaceans, amoebae,

monogeneans and helminths, still exists. The annual global loss of juve-

nile fish on account of parasitic infections was estimated to vary from

107.31 to 134.14 million USD and loss of marketable size fish from

945.00 million to 9.45 billion USD, the total estimate being 1.05 billion

to 9.58 billion USD,379 and in recent years the incidence of parasitic dis-

ease outbreaks globally appears to be increasing. Indeed, global annual

direct and indirect losses in salmonid aquaculture due to infestations

with sea lice (Lepeophtheirus salmonis) has been estimated to be 500 mil-

lion to 1 billion USD.380 A greater understanding of host–parasite inter-

action and parasite biology and life-cycle as well as the immunobiology

of pathogenic parasites is vital in order to progress. To these ends,

‘omics’ studies or the high-throughput analysis of cellular macromole-

cules, which include genomics, transcriptomics and proteomics, offer

powerful methods for developing vaccines. Potential vaccine candidates

and successful vaccines, with the possibility of the development of mul-

tivalent vaccines which offers a combination of several antigens, poten-

tially overcome the challenge of the diverse antigenic profile of various

developmental stages and strains of parasites.381
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Phage therapy does not damage the gut microbiota or surround-

ing microbial communities and can safely be used within microbial

environments, such as earthen ponds, as well as within more devel-

oped aquaculture operations. In the latter case, where there are solid

surfaces, disrupting QS and biofilm formation by pathogenic bacteria

is theoretically promising for the future, but how it can be implemen-

ted without affecting other surrounding microbial populations is

unclear. However, as phage therapy and probiotics use living organ-

isms, they are susceptible to point mutations and genetic drift, making

both therapies less effective unless new phage/bacteria combinations

or probiotic bacteria are identified. The existence of phage and bacte-

rial strains, and their differences in relatively short geographical dis-

tances due to environmental variations, makes it necessary to develop

solutions for each region.

Gene-editing could potentially allow more specific targeting of

pathogens by manipulation of the virus and/or bacterial genomes;

genetic modification of phages, bacteria and hosts may provide scien-

tific solutions but may not be acceptable to the general public. For

example, a gene from the skin of toads, magainin 1, which was

inserted into the oyster (Ostrea edulis) genome,382 successfully pro-

tected oysters from the protozoan pathogen Bonamia ostreae, how-

ever, the resistant oysters were not marketed because of perceived

public antipathy.

Pro- and pre-biotics play an important role in providing resistance

to disease through conferring immune benefits, improving epithelial

barrier integrity and providing beneficial microbes in the host gut and

surrounding environment, thus offering an alternative to the use of

antibiotics. However, there is a lack of knowledge concerning the

exact mechanisms of action and more information is required on

host/microbe interaction in vivo. Further research is also required to

identify optimal strains, doses, as well as application routes and the

possibility of acquisition of genes encoding the virulence and antimi-

crobial drug resistance traits from pathogens to probiotics through

horizontal transfer of genes is a cause for concern.383–385

In addition to the enhancement of biosecurity measures and

improvement of water quality on farms, mathematical and statistical

modelling may provide guidance for reducing the likelihood of antibi-

otic resistance where other solutions are not possible.386–389 Good

husbandry practices such as determining optimum stocking densi-

ties390 and fallowing periods391 may minimise bacterial outbreaks in

aquaculture. Controls must also continue to be put in place to mini-

mise the likelihood of the development of resistance genes. This is

particularly relevant where currently such measures are difficult to

implement, for example in aquaculture in some developing

countries,392 and in the ornamental fish trade, which uses prophylactic

antibiotic treatment indiscriminately, and which can translocate resis-

tance genes of human and animal importance, as well as aquatic dis-

eases, over intercontinental distances.

Of the various alternatives to antimicrobials presented above,

vaccination (Figure 3) stands out as presenting a high likelihood of

being a proactive solution to disease prevention in finfish.

Major salmon aquaculture-producing countries are Norway, Chile,

Canada and Scotland. The Norwegian experience of minimising

antimicrobial use through effective vaccination is often cited. On the

other hand, Chilean salmon aquaculture industry used 530 g of antibi-

otic per tonne of salmon harvested. The difference is due to the avail-

ability of vaccines against disease problems faced by Norway and

Chile in salmon aquaculture. In Norway, the major disease problems

are vibriosis and furunculosis against which effective vaccines are

available; while in Chile, the major disease problem is due to Piscirick-

ettsia salmonis against which effective vaccines are currently not

available.81,393

We discuss in the following section lessons learnt, both from the

vaccination of farmed salmon in Norway and the use of SPF seed—

both are essential elements of a proactive biosecurity strategy.

4.1 | Lessons from the vaccination of farmed
salmon in Norway—a case study

The Norwegian salmon industry, during the 1980s and early 1990s,

was heavily affected by bacterial infections in their cultured stocks.

Additionally, in the mid-1980s, Norway experienced the first-ever

outbreak of a new viral disease, infectious salmon anaemia (ISA),

affecting salmonids.394,395 These problems underlined the urgent

need to develop a national biosecurity programme in cooperation with

national authorities, the industry and research institutions. The imple-

mented programme throughout the early 1990s managed to alleviate

the burden of these infections.

One important factor in this biosecurity programme was the

development and endorsement of efficient vaccines. It is fair to say

that vaccination, since the early 1990s, has been the single most

important measure to control bacterial diseases in the Norwegian sal-

monid industry. The introduction of efficient vaccines against furun-

culosis and Vibrio infections, especially cold-water vibriosis,

dramatically reduced the use of antibiotics on farms. From a total use

of almost 50 metric tonnes (MT) and a production of 200,000 MT in

the early 90s, the annual use of antibiotics prescribed for salmonids in

the Norwegian salmon industry since 1996 has varied between

500 kg and 1500 kg.7

The Norwegian Food Safety Authority has the mandate to

enforce vaccination as a tool to control an infection in special situa-

tions, as well as to illegalize vaccination against specific infections as

vaccines may hide a true infection situation. In Norway, the produc-

tion of juvenile Atlantic salmon (Salmo salar) for grow-out in seawater

was approximately 400 million in 2019 and the industry routinely vac-

cinates all smolts against one or more pathogenic agents prior to sea

transfer, according to the various needs of the salmon producing com-

panies in relation to the geographical and epidemiological situation.

According to the Norwegian Medicines Agency (NoMA), Norway has

19 vaccines approved for salmonids (S. salar and O. mykiss)396 against

bacterial and viral infections, from multivalent seven-antigen compo-

nent vaccines to vaccines consisting of just one antigen. Most vac-

cines consist of inactivated agents combined with an adjuvant for

intraperitoneal administration (Tables 2 and 3). Recently, one DNA

vaccine has been made commercially available.116 Vaccination is

16 BONDAD-REANTASO ET AL.
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routinely carried out by injection according to strict vaccination and

quality protocols. Generally, more than 400 degree-days is required to

develop a proper immune response, implying the vaccination should

occur at the latest 6–10 weeks prior to sea transfer, depending on the

water temperature in the hatchery. Juveniles are vaccinated at a size

greater than 20 g in order to produce immunocompetency.

Salmon production began in Norway in the late 1960s as a

diversification of small-scale farmers supported by the govern-

ment, with little or no regulation.396 In 1973, the first law on

concessions in salmon aquaculture was introduced, with permis-

sions required to set up a fish farm,397 and, in 1985, the first spe-

cific aquaculture-related law was issued. In the late 1980s and

early 1990s, the industry experienced great challenges due to

furunculosis, vibriosis and cold water vibriosis causing high con-

sumption of antibiotics. Based on the Norwegian aquaculture law

from �85 and the availability of efficient vaccines, biosecurity

measures were implemented in combination with compulsory vac-

cination against these three bacterial infections.

F IGURE 3 Vaccination is a key tool to ensure sustainable aquaculture production. (a) Vaccine developmental stages from identification of
disease and causative agent to research, production process validation, clinical trials and farm-level studies, to regulatory approval, marketing and
application. (b) Vaccine provides protection against target organisms through increasing innate and adaptive immunity leading to reduction in
antibiotic usage

BONDAD-REANTASO ET AL. 17
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These measures created a dramatic reduction in disease occur-

rence and antibiotic use. When implementing EU directive 66/88 in

Norway in 2009/2010, the vaccination mandate was lifted as the

three bacterial diseases were no longer listed. However, the industry

continued the vaccination routines on a voluntary basis.

In 2005, key environmental issues were addressed, with new reg-

ulations focussing on the sustainable production and growth of an

already significant and environmentally impactful industry, which

included goals to reduce the impact of disease on cultured stock.

Indeed, the Norwegian salmon farming has seen exponential growth

over the last 50 years, and is continuing to grow; it has historically

and continues to rank first among the major global salmonid pro-

ducers, accounting for 1.49 million MT live weight in 20202 and con-

stitutes almost 71% of total seafood export value from Norway in

2021, thus by far surpassing the traditional fisheries (Norsk sjømat

2022; https://nokkeltall.seafood.no or https://en.seafood.no/).

4.2 | The importance of SPF seed—A case study

Specific pathogen-free (SPF) animals refer to stocks coming from a

population that have (1) tested negative for specific pathogens for at

least two consecutive years; (2) been raised in high biosecurity facili-

ties under stringent biosecurity measures; (3) been fed with biosecure

feeds; and have (4) a surveillance program in place, including testing

with molecular and histopathological methods.396 Reducing the

impact of diseases must begin at the origin of the production line,

with the use of pathogen-free seed or fry. Vertical transmission of

pathogens, occurring through infected eggs, milk or gonadal fluids, is a

common and very efficient pathway. The use of healthy broodstock is

essential to produce clean seed and avoid the spread of diseases as

disinfection of eggs is not always possible and vertically transmitted

pathogens may spread to fry if infected broodstock are used.

The strategy used in aquaculture was adapted from the SPF strat-

egy developed in the 1950s for the poultry industry, upon the realisa-

tion that poultry research was dependent on the use of animals that

were free of diseases. The value of SPF stocks was subsequently

proven valuable also for industrial-scale production. SPF has shown to

be fundamental for selection and expression of genetic gains and

laboratory-based studies, such as disease challenges and other nutri-

tional and biochemical studies. In an aquaculture context, SPF status

is part of a biosecurity strategy to prevent the introduction of infected

animals into the production system.396 Even if the same level of bio-

security cannot be maintained during the grow-out phase, using SPF

fry will decrease the chances of infection and hence reduce the preva-

lence and the impact of diseases. It should be understood that SPF

only refers to the health status of the stocks, not their degree of toler-

ance or resistance to a particular disease.

One of the arguments against the development and use of SPF

broodstock is the high investment and maintenance costs involved. It

is in fact a centralised investment, for example, requiring a high tech-

nical level of staff, know-how, facilities and so forth and should be

considered a relatively small financial outlay when compared to the

very significant and widespread cost of disease impacts. For shrimp

diseases alone, a recent study379 estimated the economic losses in

Thailand due to acute hepatopancreatic necrosis disease during the

period 2010–2016 at USD 7.38 billion, with a further USD 4.2 billion

in lost exports. Furthermore, losses in Thailand due to Enterocytozoon

hepatopenaei could be up to USD 180 million per year. According to

the China Fisheries Statistical Yearbook, in 2018, disease outbreaks

affecting Chinese aquaculture resulted in a direct production loss of

205,000 MT, worth USD 401 million (National Bureau of Statistics of

China, 2018). These two pathogens were introduced into the aquacul-

ture industry through the feeding of infected fresh/live feeds to

broodstock, therefore breaching the conditions of SPF status of the

animals (to be fed with biosecure feeds). The 2018 Census of Aqua-

culture survey conducted by the United States Department of Agricul-

ture reported diseases as the leading cause of production losses on

farms.397 The use of SPF stocks not only reduces the impact of dis-

eases, but at the same time reduces the use of antimicrobials; as

healthier animals are stocked and raised, fewer disease events are

faced by the farmer.

While the use of SPF shrimp stocks varies greatly between

regions and farming practices, evidence is increasingly showing that

they have reduced the introduction of pathogens and disease expres-

sion in farms and provided a means for the safe introduction of both

P. vannamei around the world—the species of choice and the domi-

nant species in shrimp farming2,396 and P. monodon. The SPF strategy

is also applied in the salmon industry and is increasingly permeating

other aquaculture species.

5 | CONCLUSION

The Interagency Coordination Group (IACG) on AMR recommends

that Member States support the accessibility of cost-effective alterna-

tives to antimicrobials, particularly in low- and middle-income coun-

tries.398 The alternatives to antibiotics that have been reviewed in

this paper have great potential; some have proven benefits while

others are still in the experimental stage. Nonetheless, they should be

carefully considered based on factors related to the needs of the

country, the aquaculture system and species, targeted pathogen, ease

of administration, economics (cost–benefit), risks and public percep-

tion. Research funding should therefore be targeted to promote the

development of innovative and sustainable alternatives to antimicro-

bial usage.

Dealing with diseases in cultured aquatic populations requires a

good understanding of the environment, the host and the pathogen

and their interactions,399 in order that prevention strategies can be

put in place that may reduce the need for the use of antimicrobials,

especially antibiotics. Controlling the aquatic environment demands

an awareness of the potential source of stressors that predispose

aquatic populations to infectious diseases. Managing and optimising

the varying parameters of the aquatic environment, that is, salinity,

temperature, oxygen, pH, heavy metals, metabolites, eutrophication

and organic loading and monitoring the entry of potential pathogens

18 BONDAD-REANTASO ET AL.
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through biosecurity measures, is vital in preventing the risk of

infection.

The host's immune or nutritional status, genetics and presence of

concurrent infection(s) or existing lesions or wounds can all influence

their susceptibility to bacterial infection. Managing and optimising the

host's ability to withstand disease is critical and vaccination pro-

grammes are useful tools for the prevention and control of infection.

The minimisation of husbandry stressors by good husbandry methods

further enhances the innate immunity of the cultured animals. The

use of immunostimulants to enhance innate immunity such as prebi-

otics and probiotics, phage therapy via feeds, chicken egg yolk immu-

noglobin (IgY) and medicinal plants and all other alternatives to

antibiotics discussed in this review are all proving useful approaches.

However, more research is needed on nutrition as some apparent dis-

ease resistance associated with probiotics, prebiotics and plant feeds

may be due to antibacterial substances, or simply due to better nutri-

tion improving host health. In addition, more knowledge and research

are needed in order to better understand the successes and failures,

cost implications, efficacy, risks, practicality (especially for small-

holders), adverse effects on the farm environment and how such alter-

natives improve health and enhance host immunity.

Good aquaculture and biosecurity practices, including the prudent

and responsible use of antibiotics and use of alternatives to antibi-

otics, underpins the basic actions that may reduce the likelihood of

AMR. Having a biosecurity plan, part of a national strategy on health

management of aquatic species, in place can reduce the introduction

and spread of infectious agents into defined locations or facilities and

their transmission to other areas. Other strategies include avoiding

the entry of pathogens through the use of SPF seed.

To conclude, there should be provision for increased resources

for research in the aquaculture sector that should focus on the health

of aquatic organisms, with an emphasis on disease prevention, that

should include increasing knowledge of aquatic diseases, of the effi-

cacy and safety of veterinary medicines in different environmental

conditions, of the environmental impacts of and alternatives to the

use of antimicrobial agents and methodologies for active and passive

surveillance on withdrawal times, effluent treatments, residues, AMU

and AMR. In addition, in order to promote a better control on the use

of antibiotics, their sales should be regulated and their usage managed

under the supervision of trained aquatic health professional/personnel

to eliminate or mitigate their impacts on the environment and on food

safety.

Last but not least, we wish to emphasise the importance of

addressing the AMR issue from a One Health perspective, and the

central role of aquatic food systems through aquaculture as an inter-

face between food security, the environment and human health.
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