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A B S T R A C T   

This study proposes a novel methodology for risk assessment of products with extremely low risk. The method is 
based on the analysis of those iterations that result in illness occurrence. It is demonstrated using a hypothetical 
scenario on listeriosis from pasteurized milk heated at 72◦C–75 ◦C for 15–20 s and analysed which combinations 
of factors resulted in illness. Sixty-one cases of listeriosis were predicted from 10 billion simulations, representing 
a realistically large number of servings for this product. According to the model simulations, the illness cases 
were caused by extremely high doses resulting from three rare situations occurring concurrently: high initial 
level, less effective pasteurization (due to high thermotolerance of L. monocytogenes contaminants) and extremely 
high microbial growth during domestic storage (due to poor storage conditions). However, listeriosis was not 
always observed even if the three situations occurred. Infectivity (dose–response parameter) had the strongest 
relevance to illness occurrence. Notably, the results of the sensitivity analysis varied depending on the output 
variable (microbial concentration at exposure or illness occurrence). Furthermore, the correlation-based sensi
tivity analysis for the illness occurrence provided unreliable results, discouraging this approach for food products 
with an extremely low illness probability. Considering that number of illnesses and not exposure is the output 
variable most relevant for risk management, we propose an innovative method based on graphical representa
tions for sensitivity analysis in low-risk products.   

1. Introduction 

Regardless of how advanced processing and preservation technolo
gies are, the risk of foodborne illnesses will never be completely reduced 
to zero (Zwietering et al., 2021). A total of 600 million people world
wide annually suffer from foodborne diseases (WHO, 2015). Therefore, 
to safeguard public health, it is essential to control the risk of foodborne 
illnesses. The hazard analysis critical control point (HACCP) system has 
been widely used to manage and control food safety, which is addressed 
by analysing and controlling biological, chemical, and physical hazards 
from raw material production and procurement and handling to 
manufacturing, distribution, and consumption of the finished product. 
HACCP identifies critical control points (CCPs) from an analysis of the 
risks during food production and manages the safety of foods by 

controlling those CCPs. To ensure food safety using this method, it is 
necessary to identify key factors or combinations of factors that 
contribute to food safety risks. Despite this, it is difficult to trace back 
and identify the characteristics of the processes, distribution, and stor
age until the foods that cause foodborne disease outbreaks are 
consumed. 

In this study, we performed a quantitative microbiological risk 
assessment (QMRA), to quantify the risk of foodborne illnesses associ
ated with the consumption of pasteurized milk by simulating the effects 
of environmental conditions and bacterial characteristics on the prob
ability of foodborne illnesses in a model food chain. QMRA combines 
existing laboratory and surveillance databases with computational 
techniques to yield models that can predict public health outcomes 
(Dennis et al., 2002). Furthermore, because it is a computer simulation, 
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all the factors in the food chain can be saved to analyse in detail the 
scenarios that cause foodborne illnesses; this makes it different from the 
analysis of actual foodborne illness incidents, e.g. using epidemiological 
methods. 

To elucidate the factors that determine the risk of foodborne ill
nesses, it is necessary to consider the output variable of the QMRA. As 
part of the output of a QMRA, sensitivity analyses often find the corre
lation between the input variables (logistic parameter of the chain, ki
netic parameters of the microorganism …) and a model output. In most 
cases, sensitivity analyses for QMRA are focused on the (log) microbial 
concentration (i.e. exposure) or the (log) risk per serving. Due to the 
equations typically used for the dose-response model, the illness prob
ability is low at low microbial count and is very low at very low log 
numbers (Buchanan et al., 2000). Therefore, the left tail of the proba
bility distribution for the exposure is practically not relevant for the 
actual risk, and can introduce artefacts in the sensitivity analysis. 
Revealing factors that affect the variability in the actual risk requires 
correlations that directly indicate the occurrence of foodborne illnesses. 
In addition, the log concentration and log illness probability, which are 
often calculated using QMRA, are difficult to grasp intuitively and often 
confuse risk managers or decision makers. Expressing risk as a natural 
number––such as whether foodborne illnesses occur or not––would 
make it easier to understand and more realistic. 

The mathematical methods needed to obtain these intuitive outputs 
can be computationally demanding. Foods distributed on the market are 
generally safe, since their residual risks are very low (Zwietering et al., 
2021). However, regardless of how low the probability is, if the food is 
consumed in large quantities by a large population, the residual risk 
accumulates with the amount consumed, and the number of cases of 
foodborne illnesses increases. To illustrate this, although the risk per 
serving is higher for unpasteurized milk than for pasteurized milk, a 
report estimated a higher foodborne illness risk (cases/year/million 
population) for pasteurized milk food than for unpasteurized milk 
because of the very large difference in consumption frequency (FDA & 
FSIS, 2003). Therefore, the risk of foodborne illnesses caused by foods 
consumed in large quantities should be estimated in conjunction with 
the number of servings. In this case, it is necessary to adjust the number 
of simulations according to the number of servings for natural-number 
QMRA outputs. This results in a large computational load and has not 
been generally applied in published QMRAs. 

Accordingly, in this study, we focused on the pasteurized milk food 
chain in Western countries as a model with a relatively high food con
sumption frequency and relatively low food safety risk. We aimed to 
reveal the relevant factors in the food chain that contribute to causing 
listeriosis; we also sought to identify the CCPs that should be considered 
as a priority for control. Unlike in many other QMRAs, in the present 
one, the actual cases of illness were investigated as natural numbers and 
were correlated with the input factors. The output type for the present 
QMRA––illness occurrence––indicates whether the iteration of the 
simulated scenario caused illness and what factors or combinations of 
factors were actually responsible for the illness case. People are esti
mated to consume 5 billion servings of milk in Netherlands in 2017 (Van 
Gelder, 2021), assuming 1 serving as 200 mL), 16 billion in Japan in 
2020 (MAFF (2022), assuming 1 serving as 200 mL) and 87 billion in the 
US (FDA & FSIS, 2003). Therefore, 10 billion QMRA iterations were 
conducted in this study. In addition, sensitivity analyses were used to 
identify the most relevant factors from the food chain both for the illness 
occurrence and for exposure to the microorganism. 

2. Methods 

2.1. Thermotolerance model (for Listeria monocytogenes in milk) derived 
from metadata based on Bayesian inference 

2.1.1. Metadata preparation 
The thermal resistance of L. monocytogenes was described based on 

data from the scientific literature. We used the dataset of Van Asselt and 
Zwietering (2006), which includes 226 D-values (decimal reduction 
times in minutes) for 16 strains of L. monocytogenes in milk heat treated 
at temperatures between 50 and 75 ◦C. 

2.1.2. Description and estimation of D-value variability with Bayesian 
inference 

A secondary model for thermotolerance (D-values) of 
L. monocytogenes was fitted to the referenced meta-dataset based on 
Bayesian inference to describe its variation (Log D deviation), repre
senting a combination of variability and uncertainty. The Bayesian D- 
value model was constructed based on the most common secondary 
model for the D-value (Equation (1)): 

log D ∼ Normal
(

log Dref −
T − Tref ,heat

z
,σlog D

)

(1) 

The coefficients log D and T stand for the D-value (min) and the 
heating temperature (◦C) of each referenced dataset. The unknown pa
rameters z and log Dref represent the z-value and the expected D-value at 
the reference temperature (Tref ,heat). The observed log D deviates with 
respect to this value according to a normal distribution with variance 
σlog D

2. For the standard deviation, σlog D,the half-Cauchy distribution 
(location parameter: 0; scale parameter:1) was used as the prior distri
bution. The half-Cauchy distribution has been recommended and is 
commonly used for the prior distribution of the scale parameters like 
variances or standard deviations (Gelman, 2006; Polson & Scott, 2012). 
The reference temperature for the D-value model––Tref ,heat––was set at 
62.3 ◦C, which was the average temperature of the referenced dataset 
(Peñalver-Soto et al., 2019). The convergence of the fitting algorithm 
was evaluated by visual inspection of the trace plots of the Markov 
Chains and by checking that the r-hat values were close to 1.0. 

2.2. Growth model for L. monocytogenes in milk based on Bayesian 
inference 

2.2.1. Metadata preparation 
The growth model for L. monocytogenes was built based on growth 

data obtained from ComBase (Baranyi & Tamplin, 2004). The search 
terms were Organism = Listeria monocytogenes/inocua; Food category: 
milk; Temperature: 0-20 ◦C. This search resulted in 111 growth rates for 
L. monocytogenes in milk that were downloaded manually using the 
functions included in ComBase. 

2.2.2. Description and estimation of specific growth rate variation with 
Bayesian inference 

A secondary model for the specific growth rate (μ-values, in log CFU/ 
h) of L. monocytogenes in milk was fitted to the referenced meta-dataset 
using Bayesian inference to describe the variation in specific growth 
rate, which was a mixture of variability and uncertainty. The Bayesian 
specific growth rate model was constructed based on a linear relation
ship (Equation (2)) between ̅̅̅μ√ (with μ in log10/h) and the storage 
temperature (Zwietering et al., 1993). 

̅̅̅μ√
∼ Normal

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

μref ⋅
T − Tmin

Tref ,growth − Tmin

√

, σ ̅̅μ√

)

(2) 

The ̅̅̅μ√ and T were the data reported on each study Tmin , ̅̅̅̅̅̅̅μref
√ , 

Tref ,growth and σ ̅̅μ√ are unknown parameters (the minimum temperature 
for growth, the square root of the specific growth rate at the reference 
temperature for growth and the variance of the error term), estimated 
with Bayesian inference. For parameter estimation, Tmin and ̅̅̅̅̅̅̅μref

√ were 
assigned uninformative prior distributions––Uniform[-infinite, infinite]. 
For the estimated standard deviation of ̅̅̅μ√ , σ ̅̅μ√ , the half-Cauchy dis
tribution was used. The reference temperature for the growth rate 
model, Tref ,growth, was set at 8.52 ◦C, which was the average temperature 

H. Abe et al.                                                                                                                                                                                                                                     



Food Control 152 (2023) 109831

3

of the referenced dataset. 

2.3. Food chain simulation conditions 

This study adopted a simple one-way model (no cross contamina
tion) for simulating the food chains and pathogen growth using Monte 
Carlo simulation. The exposure assessment model was built as a Modular 
Process Risk Model (Nauta 2008) with five different modules: storage on 
farms (growth), pasteurization (inactivation), distribution from fac
tories to retail stores (growth), storage in retail stores (growth), and 
storage in domestic refrigerators (growth). Microbial inactivation was 
described using the log-linear primary model, whereas for microbial 
growth a bilinear model with exponential and stationary phase was 
used. The QMRA model was solved by Monte Carlo simulations using the 
input distributions summarized in Table 1 (described in detail below). 
For reproducibility of the results, the internal seed of the pseudo-random 
number generator was set before the simulations. The calculations were 
conducted with Python 3.7.12 using a MacBook Pro, M1, 2020. 

2.3.1. Prevalence and initial concentration 
The simulated initial concentrations, Log C0, in log CFU/mL were 

defined based on published data. The prevalence and initial concen
tration of L. monocytogenes in milk was characterized as a cumulative 
distribution (Table 1) derived from two datasets (Dalzini et al., 2016; 
Meyer-Broseta et al., 2003). 

For each iteration, the source of the data is chosen among the two 
studies with a 50% probability, defining the distribution of both the 
prevalence and the initial concentration. The presence of 
L. monocytogenes in the milk is defined by the binary variable (0 or 1), 
Wcont, generated by the Bernoulli distribution. If the Wcont was 1, the 
initial concentration was generated using the cumulative distribution 
derived from the relevant article (Table 1). If the Wcont value was 0, all 
contamination levels in subsequent steps were defined as 0 CFU. 

2.3.2. Logistic parameters (time and temperature) for on-farm storage 
The distributions of on-farm storage temperature, Tfarm, (Servello 

et al., 2004), on-farm storage time, timefarm, (Barker & Goméz-Tomé, 
2013), were used. The on-farm storage temperatures were randomly 
determined from the cumulative distribution described by Servello et al. 
(2004) based on data from Canada, and the on-farm times were 
randomly determined from the PERT distribution referenced by Barker 
et al. (2013) based on data from the UK (Table 1). The generated storage 
conditions in this study were assumed to be isothermal during storage 
and were used for assessing the growth of L. monocytogenes in farm 
storage. 

The on-farm storage growth rates were randomly selected from the 
Bayesian model developed in this study (see above the section: 2.2.). For 
each iteration, a sample of the posterior distribution of the growth 
model was taken randomly directly from the Markov chain, obtaining 
values for the parameters of the secondary growth model (Equation (2)) 
and the variance value (σ ̅̅μ√

,d). Then this parameter vector was used in 
every module involving growth (on-farm, distribution, retail and do
mestic storage). 

After determining the parameter set for the growth behaviour, the 
root growth rate at the on-farm temperature ̅̅̅̅̅̅̅̅̅̅μfarm

√ was determined by a 
normal distribution using the secondary model (Equation (2)) and the 
chosen set parameter. To analyse the variability in the specific growth 
rate, μ, of L. monocytogenes, the deviations in ̅̅̅̅̅μT

√ were defined as the 
difference from the median of the preliminary generated 10 thousands 
simulations of ̅̅̅̅̅μT

√ . The deviation from median can be the indicator for 
the variability in growth fitness. Therefore, the deviations were calcu
lated for each temperature. 

The Bi-linear model with exponential and stationary phase of the 
maximum defined as MPD (maximum population density) were used for 
growth estimation during all storage periods in this study. The 

maximum population density (log10 CFU/mL), MPD, was defined as 
Uniform(7.5,8.5) (FDA & FSIS, 2003). The pathogen concentrations 
after on-farm storage, Log Cfarm, were defined as Min (Log C0 +

μfarmtimefarm, MPD), according to the Bi-linear models of bacterial 
growth. The pathogen count increases due to growth by on-farm storage, 
ΔLog Cfarm, was defined as the difference in the logarithms of pathogen 
concentration before and after storage as Log Cfarm − Log C0. 

2.3.3. Heating conditions for pasteurization and the thermotolerance of 
L. monocytogenes in milk 

Four different pasteurization conditions (based on Melini et al., 
2017) were considered in the QMRA model: 72 ◦C for 15 s, 72.5 ◦C for 
20 s, 74 ◦C for 20 s, and 75 ◦C for 20 s. Furthermore, an additional 
condition with 85 ◦C for 20 s was used only for scenario analysis, as 
described below. The thermal condition used for each iteration was 
randomly determined among the four with the same probability. After 
determining the target thermal condition, the magnitude of the tem
perature deviation, εT,heat and time deviation, εtime,heat, was determined 
in each iteration. As the magnitude of the error could vary, four error 
patterns were prepared for the heating temperature and time, namely, 
for the error of heating temperature, ±0.05 ◦C, ±0.25 ◦C, ±0.5 ◦C, and 

±1.0 ◦C, and for that of the error in heating time, 1%, 5%, 10%, and 
25%, respectively. The errors for temperature and time were randomly 
selected with the same probability and adopted in the QMRA simulation. 
The simulated thermal conditions [heating temperature (◦C): Theat ; 
heating time (s): timeheat] were defined using PERT distributions. The 
mode of the PERT distribution was assumed as the target thermal con
dition in each iteration, and the minimum and maximum of the PERT 
distribution were assumed to be the error of the conditions. To analyse 
the relevance of the errors in the thermal conditions during sensitivity 
analysis, the deviation from the target heating conditions was defined as 
the difference in the heating condition from the target heating condi
tions of each iteration. 

The thermotolerance of the pathogen (D-value) was randomly 
selected using the Bayesian predictive model developed in this study. 
Similarly, for the growth Bayesian model, the Bayesian model for 
pathogen reduction has numerous parameter-sets for describing the 
variations in the estimates. In each MC iteration, the vector of param
eters for the secondary model (Equation (1)) and the variance (σ2

log D) 
were chosen randomly from the Markov chain describing the posteriors 
of the Bayesian inactivation model [Table 1: Discrete uniform (1, 
100000)]. After determining the parameter vector, the logarithm of the 
D-value (min), log D(Theat), taking a random draw from a normal distri
bution according to Equation (1). To analyse the relevance of variability 
in the thermotolerance of L. monocytogenes, the deviations of log D(T) for 
sensitivity analysis were defined as the difference from the median of the 
preliminary simulated 10 thousands of D(T). The deviations were 
calculated for each temperature. The D-value model was used for esti
mating the pathogen concentrations after pasteurization, Log Cheat, as 
Log Cfarm − timeheat

60D(Theat )
with timeheat in s and D(Theat) in minutes. The changes 

of the pathogen concentration by pasteurization, ΔLog Cheat , was defined 
as the difference in the logarithms of the pathogen concentration before 
and after pasteurization as Log Cheat − Log Cfarm. 

To consider the effect of a discrete milk volume in a package, the 
pathogen counts per package were defined as a discrete variable. The 
package size, Sizepack, was defined as 1000 mL, and the pathogen counts 
after packing (CFU/pack), Nheat pack, were simulated by a Poisson dis
tribution as Poisson (Sizepack10Log Cheat ). The growth model with Poisson 
distribution based on Bayesian inference describes the variations in the 
individual bacterial counts from the average value of the bacterial 
counts (Vose, 2008). For each iteration, if the draw from the Poisson 
distribution resulted in zero cells, the microbial concentration was set at 
0 CFU for every subsequent module in the simulation. 
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Table 1 
Variables used in simulation. b,c  

Parameters Units Notation Description Source 

Contaminated 
probability of bulk 
tank 

(− ) Pprevalence Pprevalence,i   

i Classification ([1, 2], [0.5, 0.5]) a   

Pprevalence,1 0.032 
Meyer-Broseta et al. 
(2003)  

Pprevalence,2 0.022 
Dalzini et al. (2016) 

Contaminated 
occurrence 

(− ) Wcont Bernoulli(< Pprevalence)

If contaminated Wcont = 1, if not Wcont = 0.  
Initial concentration log 

CFU/mL 
Log C0 Log C0,i   

Log C0,1 Cumulative ([-7.29, − 6.72, − 6.14, − 5.55, − 4.97, − 4.40, − 3.81, − 3.21, − 2.64, − 2.05, − 1.48, 
− 0.905, − 0.309, 0.260, 0.830], [9.39 × 10− 6, 2.84 × 10− 5, 5.62 × 10− 5, 1.43 × 10− 4, 6.08 ×
10− 4, 1.79 × 10− 3, 6.98 × 10− 3, 0.0163, 0.0603, 0.150, 0.415, 0.776, 0.948, 0.974, 1.0]) 

Meyer-Broseta et al. 
(2003)  

Log C0,2 Cumulative ([-1.4, 0, 1, 2, 3, 4], [0, 0.128, 0.822, 0.904, 0.941, 1.0]) 
Dalzini et al. (2016) 

Temperature of on-farm 
storage 

◦C Tfarm Cumulative ([-0.25, 0.25, 0.75, 1.25, 1.75, 2.25, 2.75, 3.25, 3.75, 4.25, 4.75, 5.25, 5.75, 6.25, 
6.75, 7.25, 7.75, 8.25, 8.75, 9.25, 9.75, 10.25, 10.75, 11.25, 11.75, 12.25], [0, 0.000792, 
0.000792, 0.00301, 0.0112, 0.06289, 0.151, 0.355, 0.556, 0.723, 0.809, 0.867, 0.910, 0.942, 
0.96, 0.983, 0.990, 0.994, 0.997, 0.9987, 0.9992, 0.9996, 0.9998, 0.9998, 0.9998, 1.0]) 

Servello et al. (2004) 

Time of on-farm storage h timefarm PERT (1.5, 12, 36) 
Barker et al., 2013 

Growth rate on farm 
storage 

log 
CFU/ 
mL/h 

μfarm If Tfarm < Tmin,d′ : 0 else: 
[
Normal

(
̅̅̅̅̅̅̅̅̅̅̅̅μref,d′

√
×

Tfarm − Tmin,d′

Tref,growth − Tmin,d′

, σ ̅̅μ√
,d′

)]2 

Tref,growth: 8.52 ◦C (Mean of dataset) 
Bayesian MCMC iteration: 100000 
Parameters: Mean (S.D.) 
μref : 0.0283 (8.8 × 10− 4) 
Tmin: -3.47 (0.54) 
σ ̅̅μ√ : 0.0275 (1.9 × 10− 3) 

Bayesian model in this 
study  

d′ Discrete Uniform (1, 100000) 
Maximum population 

density 
log 
CFU/mL 

MPD Uniform (7.5, 8.5) 
FDA, 2003 

Concentration after on- 
farm storage 

log 
CFU/mL 

Log Cfarm Min (Log C0 + μfarmtimefarm, MPD) Linear growth and 
stationary model 

Temperature of thermal 
inactivation 

◦C Theat PERT (Theat,k − εT,heat,j,Theat,k ,Theat,k + εT,heat,j) This study  
j Classification ([1, 2, 3, 4], [0.25, 0.25, 0.25, 0.25]) a   

k Classification ([1, 2, 3, 4], [0.25, 0.25, 0.25, 0.25]) a   

Theat,1 72 
Melini et al. (2017)  

Theat,2 72.5 This study  
Theat,3 74 This study  
Theat,4 75 

Melini et al. (2017)  
Theat,5 85 (Only for scenario analysis) 

Melini et al. (2017) 
Variation magnitude of 

heating temperature 

◦C εT,heat,1 0.05 This study  
εT,heat,2 0.25   
εT,heat,3 0.5   
εT,heat,4 1  

Time of thermal 
inactivation 

s timeheat PERT ( timeheat,k(1 − εtime,heat,l),

timeheat,k , timeheat,k(1 + εtime,heat,l)) 
This study  

l Classification ([1, 2, 3, 4], [0.25, 0.25, 0.25, 0.25]) a   

timeheat,1 15 
Melini et al. (2017)  

timeheat,2 20 This study  
timeheat,3 20 This study  
timeheat,4 20 

Melini et al. (2017) 
Variation magnitude of 

heating time 
(− ) εtime,heat,1 0.01 This study  

εtime,heat,2 0.05   
εtime,heat,3 0.10   
εtime,heat,4 0.25  

D-value at heating temp. min D(Theat )

10
Normal

(
−

Theat − Tref,heat

zb′
+ Log Dref,b′ , σLog D,b′

)

Tref,heat : 62.3 ◦C (Mean of dataset) 
Bayesian MCMC iteration: 100000 
Parameters: Mean (S.D.) z: 6.37 (0.14) 
Dref : 0.81 (0.04) 
σLog D: 0.29 (0.01) 

Bayesian model in this 
study  

b′ Discrete Uniform (1, 100000)  
Concentration after 

heating 
log 
CFU/mL 

Log Cheat Log Cfarm −
timeheat

60D(Theat )

Linear reduction 
model 

Package size mL Sizepack 1000 This study 

(continued on next page) 
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2.3.4. Growth of L. monocytogenes during distribution 
The growth temperature, Tdist , and time, timedist , during distribution 

of the packed milk were randomly determined from published distri
butions (Koutsoumanis et al., 2010) based on data from Greece which 
are the normal distributions for Tdist and Weibull distribution for timedist 
(Table 1). 

The growth rates during distribution were also randomly determined 
from the Bayesian model developed in this study in the same manner as 
the growth rate on the farm. The ID of the parameter set was already 
determined in the on-farm section, so the root of the growth rate at the 

distributing temperature ̅̅̅̅̅̅̅̅μdist
√ was determined by the normal distri

bution using the secondary model (Equation (2)) and the chosen 
parameter set. Similar to on-farm growth, the deviations in ̅̅̅̅̅μT

√ were 
calculated for indicating the variability of growth potentials. 

The pathogen count per package after growth was calculated as a 
discrete variable. Therefore, the pathogen count per package after dis
tribution, Ndist, was defined as 

Table 1 (continued ) 

Parameters Units Notation Description Source 

Pathogen counts in a 
package after heating 

CFU 
/pack 

Nheat pack Poisson(Sizepack10Log Cheat )

Temperature of 
distributing storage 

◦C Tdist Normal (6.66, 1.64) 
Koutsoumanis et al. 
(2010) 

Time of distributing 
storage 

h timedist Weibull (1.98, 4.33) 
Koutsoumanis et al. 
(2010) 

Growth rate on 
distributing storage 

log 
CFU/ 
mL/h 

μdist If Tdist < Tmin,d′ : 0 else: 
[
Normal

(
̅̅̅̅̅̅̅̅̅̅̅̅μref,d′

√
×

Tdist − Tmin,d′

Tref,growth − Tmin,d′

, σ ̅̅μ√
,d′

)]2 

Bayesian model in this 
study 

Pathogen count after 
distributing 

CFU/ 
pack 

Ndist Min (Nheat pack + Negbin(Nheat pack,10− μ(Tdist )
timedist ); Sizepack × 10MPD) Linear growth and 

stationary model 
Concentration after 

distributing 
log 
CFU/mL 

Log Cdist Log
( Ndist

Sizepack

)

Temperature of retail 
storage 

◦C Tretail Normal (4.98, 2.9) 
Koutsoumanis et al. 
(2010) 

Time of retail storage h timeretail Cumulative ([0, 5, 15, 25, 35, 45, 55, 65, 75, 85, 95, 105], [0, 0.0198, 0.443, 0.718, 0.85, 
0.916, 0.951, 0.970, 0.982, 0.992, 0.997, 1.0]) Koutsoumanis et al. 

(2010) 
Growth rate on retail 

storage 
log 
CFU/ 
mL/h 

μretail If Tretail < Tmin,d′ : 0 else: 
[
Normal

(
̅̅̅̅̅̅̅̅̅̅̅̅μref,d′

√
×

Tretail − Tmin,d′

Tref,growth − Tmin,d′

, σ ̅̅μ√
,d′

)]2 

Bayesian model in this 
study 

Pathogen count after 
retail storage 

CFU/ 
pack 

Nretail Min (Ndist + Negbin(Ndist ,10− μ(Tretail )
timeretail ); Sizepack × 10MPD) Linear growth and 

stationary model 
Concentration after 

retail storage 
log 
CFU/mL 

Log Cretail Log
( Nretail

Sizepack

)

Temperature of domestic 
storage 

◦C Tdomestic Classification ( [Normal (7.57, 2.95), Normal (6.31, 2.66), Normal (6.69, 3.29), Normal (8.40, 
3.00)], 
[0.25, 0.19, 0.05, 0.51]) a 

Koutsoumanis et al. 
(2010) 

Time of domestic storage day timedomestic Cumulative ([0, 1, 2, 3, 4, 5], 
[0, 0.23, 0.74, 0.96, 0.98, 1.0]) Koutsoumanis et al. 

(2010) 
Growth rate on domestic 

storage 
log 
CFU/ 
mL/h 

μdomestic If Tdomestic < Tmin,d′ : 0 else: 
[
Normal

(
̅̅̅̅̅̅̅̅̅̅̅̅μref,d′

√
×

Tdomestic − Tmin,d′

Tref,growth − Tmin,d′

, σ ̅̅μ√
,d′

)]2 

Bayesian model in this 
study 

Pathogen count after 
domestic storage 

CFU/ 
pack 

Ndomestic Min (Nretail + Negbin(Nretail,10− μ(Tdomestic )
timedomestic ); Sizepack × 10MPD) Linear growth and 

stationary model 
Concentration after 

domestic storage 
log 
CFU/mL 

Log Cdomestic Log
(Ndomestic

Sizepack

)

Serving size mL Sizeserve Cumulative ([0, 238, 239, 476, 714], 
[0, 0.50, 0.75, 0.95, 1.0]) WHO/FAO, 2004 

Dose level CFU Dose 
Poisson

(
Ndomestic

Sizeserve

Sizepack

)

r-value (− ) r Classification ([rIntermediate; rPerinatal; rElder], [0.823, 5.71 × 10− 3, 0.171]) a 

FDA, 2003  
log rIntermediate Normal (− 14.11, 1.62) 

Pouillot et al. (2015)  
log rPerinatal Normal (− 11.70, 1.62) 

Pouillot et al. (2015)  
log rElder Normal (− 12.83, 1.62) 

Pouillot et al. (2015) 
Illness probability – Pill Wcont(1 − e− rDose) WHO/FAO, 2004 
Illness occurrence (− ) Will Bernoulli(< Pill)

If illness Will = 1, if not Will = 0   

a Classification ([A, B, C], [pA, pB, pC]) denotes the function for divisions to cases; the output value derived from the function is assigned to A with a probability of pA, 
to B with a probability of pB, and to C with a probability of pC. 

b The valuables of i, j, k, and l denotes the indicator for divisions to cases. 
c The b′ denotes the indicator for the parameter set number from Bayesian MCMC for the developed reduction model; The d′ , d′′, d′′′ , and d′′′′ denote the indicators for 

the parameter set number from Bayesian MCMC for the developed growth model.  
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Ndist ∼Min
[
Nheat pack +Negbin

(
Nheat pack,10− μ(Tdist)

timedist
)
,
(
Sizepack ×10MPD)

]

(3) 

using the negative binomial distribution describing the stochastic 
variability in growth with a Bayesian model. The negative binomial 
distribution is needed in case levels are very low and provides the sto
chastic prediction as a discrete number based on continuous pathogen 
concentrations (Vose, 2008). There cannot be 1.4 bacteria in a pack but 
only either 0, 1, 2 or more. Therefore, the pathogen concentration after 

distribution, Cdist, was derived as 
(

Ndist
Sizepack

)
. The increase of pathogen 

concentration (not log) during distribution, ΔCdist, was defined as the 
difference in the pathogen concentration before and after distribution as 
Cdist −

Nheat pack
Sizepack 

only if the Nheat pack was not zero. If Nheat pack was zero, the Δ 

Cdist was defined as zero. The following calculation of pathogen con
centration changes applies in the same way. 

2.3.5. Retail time, temperature, and growth of L. monocytogenes in milk 
The distributions of the retail temperature, Tretail, and retail storage 

time, timeretail, were randomly determined from referenced distributions 
(Koutsoumanis et al., 2010). 

The growth rates and amounts during distribution were also 
randomly determined from the Bayesian model developed in this study, 
similar to the growth rate on farms. The pathogen count per package 
after distribution, Nretail, was defined as 

Nretail ∼ Min
[
Ndist +Negbin

(
Ndist, 10− μ(Tretail)

timeretail
)
,
(
Sizepack × 10MPD)

]
(4) 

The same as ΔCdist, the increase of pathogen concentration on retail, 
Δ Cretail, was defined as Cretail − Cdist . 

2.3.6. Growth of L. monocytogenes during domestic storage 
The distributions of temperature, Tdomestic, and time, timedomestic, 

during domestic storage were randomly determined from the distribu
tions reported by (Koutsoumanis et al., 2010) based on data from 
Greece. That is, a normal distribution for Tdomestic and a cumulative 
distribution for timedomestic (Table 1). The description of the increase of 
pathogen concentration on domestic storage, Cdomestic, was calculated as 
described above. 

2.3.7. Consumption phase and dose-response modelling 
The serving size reported by WHO/FAO (2004) was used for Sizeserve 

and generated as random numbers following a cumulative distribution 
(Table 1). The (discrete) dose of L. monocytogenes consumed was 
calculated as a random draw from a Poisson distribution as 

Poisson
(

Ndomestic
Sizeserve
Sizepack

)
. People consuming the simulated milk servings 

were randomly selected from three types of host populations: interme
diate, perinatal, and elderly. The host classification probability was 
derived based on the reported data of the estimated number of annual 
servings of pasteurized milk (totally 8.75 × 1010 (FDA & FSIS, 2003)) 
consumed by these three population groups (intermediate: 7.2 × 1010, 
perinatal: 5.0 × 108, and elderly: 1.5 × 1010 (FDA & FSIS, 2003)). The 
illness probability per serving was calculated using an exponential 
dose-response model (Pill = 1 − e− rDose). The r-value of the dose response 
model was randomly selected for each host population [intermediate: 
Normal(− 14.11,1.62) perinatal: Normal( − 11.70, 1.62), and elderly: 
Normal( − 12.83,1.62)] (Pouillot et al., 2015). 

Finally, the illness occurrence, Will, was calculated from the Bernoulli 
distribution using the value of Pill calculated from the dose-response 
model. A value of 1 for Will indicates the serving-caused illness, 
whereas a value of 0 indicates that the serving does not cause illness. The 
number of illness cases was derived from a large number of iterations of 
the food chain simulation required because of the low risk per serving. 

2.4. Sensitivity analysis for identifying the most relevant factors for the 
risk of listeriosis 

Spearman’s rank correlation coefficients for the variable factors were 
derived to elucidate the relevance of each factor to the QMRA results. 
For comparison, both the correlations of factors against the pathogen log 
concentration at consumption, Log Cdomestic, and against illness occur
rence, Will, were determined. The calculation of Spearman’s correlation 
of 10 billion simulations was conducted and illustrated in the tornado 
chart for relevance. 

2.5. Scenario analysis for different thermal condition targets 

To compare the impact of the different heat regimes (72◦C–75 ◦C; 
15–20 s, 85 ◦C; 20 s), the 1 billion iterations of the QMRA model were 
performed for each heating condition, while the other variables were 
modified randomly as described above. As the output, not only the 
illness occurrence, Will, but also the average of the illness probability per 
serving, Pill, were derived in the scenario analysis. 

3. Results 

3.1. QMRA simulation for 10 billion servings for final concentration and 
illness occurrence 

3.1.1. Changes in pathogen concentration in the food chain 
Bayesian secondary models describing the inactivation and growth 

of L. monocytogenes in milk at low temperatures were successfully fitted 
to each metadata set. The estimated 95% credible interval and predic
tion bands for the secondary models are shown in Fig. S1 (and estimated 
parameters are used in Table 1). 

The changes in L. monocytogenes concentrations in the simulated food 
chains (Fig. 1A) and a boxplot of the initial contamination level (log 
CFU/mL) and the changing ratio (ΔLog C: log CFU/mL; Fig. 1B) are 
shown, respectively. Ninety nine percent of the initial contamination 
levels varied from − 7.3 to 4.0 log CFU/mL. The changes of the pathogen 
concentration by pasteurization of whole scenarios had the greatest 
variance in the changes of concentrations; the median was − 20 log CFU/ 
mL, but the 99.99% range was from − 474 log CFU/mL to − 0.87 log 
CFU/mL. Furthermore, the variation of the microbial concentration in 
those cases where illness occurred are illustrated in Fig. 1A as a solid 
orange line. Each of the 61 orange lines represent the microbial con
centration in a scenario that resulted in illness. Compared with the 
overall changes among all scenarios, the concentration changes of the 
illness scenarios are extremely rare combinations of three worst-case 
situations taking place at the same time: high initial contamination 
level, low reduction in the pasteurization section and large growth 
during domestic storage. The details of the conditions and concentration 
changes are listed in Table S1. 

The distribution and the place of the illness scenarios of the initial 
contamination level, growth ratio on farms, reduction ratio by 
pasteurization, growth ratio on distribution, growth ratio on retail 
storage, and growth ratio on domestic storage are shown in Fig. 2. The 
orange bars indicate the location of the specific variable in the particular 
simulations that resulted in illness. This type of figure, which we 
designated “barcode chart,” makes it easier to compare and understand 
the specifics of illness scenarios. If the factor does not influence the risk 
of illness, the orange bars would be distributed evenly according to the 
sampling distribution in blue (Fig. S2). Otherwise, any clustering of bars 
in a given area highlights a relationship between the factor represented 
and the microbiological risk. For example, the survival ratio by 
pasteurization (Fig. 2C) and the growth during storage (especially do
mestic, Fig. 2F) seem to be relevant to the illness occurrence, because all 
illness scenarios in the reductions were higher than the mode of whole 
distribution (almost − 9 log CFU/mL, and many of the illness scenarios in 
domestic storage were in the extreme upper tail end of the growth 
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distribution). 

3.1.2. Estimated dose and illness probability of L. monocytogenes per 
serving of pasteurized milk, and illness cases 

In the distribution of the L. monocytogenes log dose in the contami
nated dose scenario, the zero-dose scenario was omitted because zero 
CFU would be calculated as minus infinite log CFU. Of all the simulated 
scenarios, only 0.04% had at least one cell per package of a litre of milk 
(i.e., 4 in 10,000 packages). Following the same logic as with Fig. 2, 
Fig. 3 shows a right-hand shift of the orange barcode compared with the 
blue distribution. The shifts in the pathogen dose indicated that there is 
a specificity in the dose with listeriosis. The finally contaminated sce
nario’s quantile (0.25, 0.50, and 0.75) was 0.67 log CFU; 1.5 log CFU; 
2.5 log CFU. Most simulated dose levels were lower than 6 log CFU, but 
most of the illness doses were higher than 8 log CFU, and the minimum 
dose in the illness scenarios was 7.1 log CFU, which is in the extreme 
upper tail end. The 7.1 log CFU dose was the 1.49 × 10− 4 percentile of 
10 billion servings. Comparing the doses of the specific illness scenarios 
with the whole distribution (Fig. 3), the result emphasised that the 
illness scenarios were all on the extreme tail end of the probability 
distribution, indicating that the situation in which foodborne illness 
occurs is an “extreme” outcome (Zwietering, Garre, & Den Besten, 2021; 

Zwietering, Garre, Wiedmann, & Buchanan, 2021). Moreover, the 
number of scenarios with higher dose than 7.1 log CFU was 14900. 
Therefore, the illness cases per all scenarios higher than 7.1 log CFU was 
0.4% (61/14900 = 0.0041). This result suggests that even at doses 
higher than 7.1 log CFU, the illness occurrence is rare. 

In a QMRA simulation, 61 cases of illness occurrences were estimated 
for 10 billion scenarios. Therefore, the illness probability derived from 
the illness occurrence was 6.1 × 10− 9 (risk per serving). This is in 
accordance with the (arithmetic) average of the illness probability being 
calculated as 6.16 × 10− 9. Our results from 61 cases of listeriosis per 10 
billion servings (6.1 × 10− 9) are similar to those derived from the esti
mation of QMRAs by other official organizations. The World Health 
Organization and Food and Agriculture Organization estimated 50 
illness cases per 10 billion servings (0.005 cases per 1,000,000 servings) 
(FAO & WHO, 2004), whereas the Food and Drug Administration esti
mated 10 illness cases per 10 billion servings (1.0 × 10− 9 cases per 
serving) (FDA & FSIS, 2003). Therefore, our results seem to be at a 
reasonable order of magnitude. 

3.2. Sensitivity analysis of each factor to pathogen log concentration at 
consumption & illness occurrence 

Fig. 4 compares the results of the sensitivity analysis based on 
Spearman’s correlation with respect to the concentration of 
L. monocytogenes at the consumption time (Fig. 4A) and the number of 
illness occurrence (Fig. 4B). There was a difference in the relative order 
of the relevance magnitudes. For the final contamination level, the most 
relevant factor was log D deviation (ρLogD deviation|LogCdomestic

: 0.20), followed 

by heating temperature (ρTheat|LogCdomestic
: -0.14), initial contamination level 

(ρLogC0|LogCdomestic
: 0.13), and heating time (ρtimeheat|LogCdomestic

: -0.12), which 

had a relatively stronger relevance. The correlations between the stor
age factors and the variations in the growth rate for the final levels were 
relatively low (ρTdomestic|LogCdomestic

: 0.00049, ρtimedomestic|LogCdomestic
: 0.00048, 

ρ ̅̅μ√
domestic|LogCdomestic

: 0.00036, etc.). On the other hand, according to the 

correlations of illness occurrence, the logarithm r parameter of the 
dose–response model, which indicates variations in the infectivity, had 
the greatest relevance (ρLogr|Will

: 0.00078), followed by log D deviation 
(ρLogD deviation|Will

: 0.00076), domestic storage time (ρtimedomestic |Will
: 

0.00071), domestic storage temperature (ρTdomestic |Will
: 0.00068), initial 

contamination level (ρLogC0|Will
: 0.00065), heating temperature (ρTheat |Will

: 

-0.00054), the ̅̅̅μ√ deviation on domestic storage (ρ ̅̅μ√
domestic|Will

: 0.00049), 

and heating time (ρtimeheat |Will
: -0.00044). Compared to other factors, 

although the domestic storage conditions had a lower relevance to the 
final contamination level, the domestic condition was highly relevant to 
illness occurrence. 

The correlation coefficients in Fig. 4B are very small, since theses 
show the correlation of 61 points having the value 1 (illness occurs) and 
10 billion values zero (no illness). The highest correlations found here 
are indications that the spread of the “ones” is not evenly over the 
variable of interest and is an indication that a variable is relevant for 
cases to occur. The correlation coefficients are not significantly 
different, due to the low number of illness cases in relation to the total 
number of samples. Both these correlation coefficients and the results 
from the bar-code chart show the same/similar factors identified as most 
relevant. 

3.2.1. Specifics of the time-temperature condition in illness scenarios 
As expected, pasteurization conditions had a high impact on the 

illness occurrence, with a lower heating temperature and a shorter 
heating time resulting in more listeriosis cases. There was a left shift of 
the orange barcode compared to the whole distribution of the heating 
temperature (Fig. 5A) and a left shift of the barcode compared to the 
whole distribution of the heating time (Fig. 5B). These results are in line 

Fig. 1. The comparison of Listeria concentration changes for all scenarios and 
illness occurring scenarios. The prediction band (Panel A; Max-Min: light blue; 
99%: blue; median: solid blue line) of the change in Listeria concentration in 
milk during the simulated food chains, and the concentration change in case of 
illness occurrence (Panel A; 61 orange lines; spaghetti plot). The boxplot of the 
initial contamination level (log CFU/mL) and the concentration change (log 
CFU/CFU) by storages and pasteurization in whole scenario (Panel B; black 
boxplot) and illness occurred scenario (Panel B; orange boxplot). The prediction 
range and the box plots were based on only the situation of contaminated 
milk packages. 
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with the results of the sensitivity analysis based on correlations with 
respect to the illness occurrence (Fig. 4B). Focusing on the heating 
target, the 72 ◦C for 15 s scenario resulted in 47 illness cases; the 72.5 ◦C 
for the 20 s scenario resulted in 11 cases; the 74 ◦C for 20 s scenario 
resulted in 3 cases; and the 75 ◦C for 20 s scenario resulted in no illness 
cases. 

For almost all illness scenarios, the pasteurized milk was stored at 
temperatures higher than 7.5 ◦C on domestic storage for more than 2 
days (Fig. 6). In particular, temperatures higher than 10 ◦C and dura
tions of more than 4 days had a high density of illness conditions. For the 
other time–temperature conditions, there was no shift in the barcode 
chart as compared with the whole distribution (Fig. S2). 

3.2.2. Specifics of pathogen characteristics in the illness scenarios 
The characteristics of the pathogen, which are factors beyond the 

control of food producers, were also relevant to illness occurrence. There 
was a clear right shift of the barcode in the thermotolerance deviation of 
L. monocytogenes, the ̅̅̅μ√ deviation on domestic storage, and infectivity 
(Fig. 7) or by adding the times until consumption after pasteurization 
(Fig. 8). In terms of the other ̅̅̅μ√ deviations (on-farm, distributing and 
retail), there was no shift (Fig. S3). In particular, for thermotolerance 
and infectivity, all the characteristics for simulations where illness 
occurred were higher than each mode of the whole distribution (see 
Fig. 7 and Table S1). 

Fig. 2. The frequency distributions of the estimated 
pathogen behaviour (blue distribution) of 
L. monocytogenes in raw milk and its location in sce
narios with illness (orange bars; barcode chart; A: 
initial contamination level; B: growth ratio on farm 
storage; C: survival ratio by pasteurization; D: growth 
ratio on distributing storage; E: growth ratio on retail 
storage; F: growth ratio on domestic storage). The 
scale and x-axis grid of the above orange barcode 
chart is same as that of the below blue distribution. All 
distributions represent only the contaminated situa
tions in each stage.   

Fig. 3. The distribution of the estimated L. monocytogenes dose from contami
nated pasteurized milk (blue distribution) and its location in scenarios with 
illness (orange bar above; barcode chart). The scale and x-axis grid of the above 
orange barcode chart is same as that of the below blue distribution of Log dose 
of contaminated dose scenario. The contaminated dose scenario was 0.04% of 
all scenarios: the doses of the 99.96% of all simulated scenarios were zero. 

H. Abe et al.                                                                                                                                                                                                                                     



Food Control 152 (2023) 109831

9

3.3. Scenario analysis for thermal condition targets 

Similar to the results shown in Fig. 5, the scenario analysis for the 
thermal condition targets indicated that a lower heating temperature 
and shorter heating time resulted in more cases of listeriosis (Table 2). 
The average arithmetic risk (the illness probability per serving) in the 
72 ◦C for 15 s scenario was four times that in the 72.5 ◦C for 20 s sce
nario, 24.5 times that in the 74 ◦C for 20 s scenario, and 394 times that in 
the 75 ◦C for 20 s scenario. The risk in the 85 ◦C for 20 s scenario was 
estimated to be extremely low, lower than the precision of the floating- 
point arithmetic. Focusing on the occurrences of the cases of listeriosis 
derived from 1 billion servings, a similar effect of the heating target 
conditions could be observed although it was difficult to see the differ
ences in extremely low-risk conditions (Table 2). These results were 
similar to that of illness cases derived from 10 billion QMRA. 

4. Discussion 

The risk of developing an illness after eating a food in a developed 
country is extremely small for most products. However, the annual 
consumption of these products is often in the order of billions, making 
this small risk per serving still relevant for public health (Zwietering, 
Garre, Wiedmann, & Buchanan, 2021). Analysing the risk of scenarios 
with extremely low risk has particular challenges for model definition, 

calculation and analysis. In this sense, the methodology proposed in this 
study, which focuses on particular conditions that result in the occur
rence of illness, is considered an intuitive, relevant and 
easy-to-understand analysis method for scenarios with an extremely low 
risk per serving. 

For the development of the methodology, the study used a hypo
thetical scenario that combines information from different regions. 
Namely, storage conditions are taken from Greek data, while con
sumption data represents a survey from the United States of America. 
Therefore, the risk estimate should not be interpreted as a realistic 
representation of the situation in either country. Nonetheless, these 
parameters are in the right order of magnitude for most developed 
countries, so they clearly exemplify some of the challenges for risk 
assessment in cases with extremely low risk. As shown by the con
sumption data from the USA, billions of servings of milk are consumed 
each year, a result that is also applicable to other developed countries 
and that makes these products with extremely low risk still relevant for 
public health. These results are also applicable to other food products 
with extremely low risk but consumed in great quantities, such as meat. 

The methodology developed here is based on the study of those 
Monte Carlo simulations that resulted in illness occurrence (discrete) 
and not risk per serving or dose (continuous), provides significant ad
vances in the interpretation of the results of a QMRA model for this type 
of scenario. In particular, the spaghetti plot (Fig. 1) and the barcode 

Fig. 4. The Spearman’s correlation coefficients of the impact of stochastic variable factors on the final contamination levels of L. monocytogenes (in log CFU/ml) at 
the moment of consumption (A) and on the illness occurrence (B). Factors with stronger correlation coefficients are located at the top. 
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charts (Figs. 2, 3, 5 and 6) provide a visual insight on which elements of 
the food supply chain and which factors are more relevant for the illness 
occurrence. They show that, for the case studied, illness only takes place 
when independent, rare events (low reduction in pasteurization, high 
growth and high pathogenicity) occur at the same time. Therefore, risk 
managers could control the risk in different ways. One option would be 
to control heavily one step of the chain (e.g., pasteurization), as illness 
only occurs if the three steps (reduction, growth and pathogenicity) fail 
at the same time. A different option would be the application of milder 
controls on every step independently, as it is very unlikely that every 
control fails at the same time. 

On the other hand, the spaghetti and barcode plot do not provide a 
clear rank of the model variables, making it hard to prioritize in
terventions. Hence, it is often advisable to combine this type of analysis 
with a sensitivity analysis. In this case, we used correlation analysis 
based on two different output variables: the illness occurrence and the 
microbial concentration at exposure. We observed that the outcome was 
strongly dependent on the output variable, due to the sigmoidal 
behaviour of the dose-response relationship as function of the log dose of 
L. monocytogenes. When the correlation analysis is based on the (log) 
microbial concentration at exposure, the calculation is based on the 
whole range of concentrations. However, the dose-response model is 
practically flat for lower doses. As a result, because the output of the 
illness occurrence is binary (0 or 1), simulations with low exposure 
result in the same outcome. This results in a different rank depending on 
the output variable used for the correlation analysis. Nonetheless, note 
that these results have been obtained for L. monocytogenes, a pathogen 
with low virulence. It is likely that the dependence on the output 

variable is not so strong for more virulent pathogens, such as enter
ohemorrhagic Escherichia coli. 

Therefore, we emphasize that a risk assessor will need to choose an 
appropriate target of sensitivity analysis. When consumers’ health is the 
primary concern, focusing on the correlation to the output that directly 
expresses “whether foodborne illness occurs or not,” such as the output 
style of “illness occurrence” proposed in this study, would be an 
appropriate method. On the other hand, these correlation coefficients 
calculated are extremely small, making it hard to make reliable in
ferences. This is due to the output variable being binary (illness or not) 
and the very low frequency of illness scenarios (61 cases/10 billions). 
Therefore, the results of a correlation analysis based on the illness 
occurrence should be analysed carefully, comparing it to the results of 
other types of analysis (e.g., barcode plot) and against expert opinion. 
Furthermore, sensitivity analysis of concentration at the time of con
sumption can be informative on its own. For instance, since various 
standards of laws and/or regulations are usually based on the numbers 
or concentrations of bacteria, the sensitivity analysis to assess final 
contamination level will be valid for determination of some regulations 
or performance objectives. 

Although the QMRA model has mostly illustrative purposes, there 
are still some limitations that should be underlined. As mentioned 
above, the model combines data from different regions. Hence, although 
there are similarities between them (e.g., both are developed countries), 
the risk estimates are not a true representation of either region. 
Furthermore, the model does not include correlations between its vari
ables. For example, storage under temperature abuse often results in 
obvious spoilage and consumer rejection, reducing the chance of prod
ucts with high bacterial count being consumed. Therefore, models that 

Fig. 5. The distributions of the pasteurization temperature: A and time: B (blue 
distribution) and its location in scenarios with illness (orange bars). The scale 
and x-axis grid of the above orange barcode chart is same as that of the below 
blue distribution. 

Fig. 6. The distributions of the domestic storage temperature: A and the time: B 
(blue distribution) and its location in scenarios with illness (orange bars). The 
scale and x-axis grid of the above orange barcode chart is same as that of the 
below blue distribution. 

H. Abe et al.                                                                                                                                                                                                                                     



Food Control 152 (2023) 109831

11

do not include this kind of correlation tend to overestimate the number 
of illness cases. Another significant data gap is data on pasteurization 
conditions (times and temperatures), which is often not publicly avail
able. As illustrated by the results of this study, this uncertainty is highly 
relevant for the outcome of the risk assessment, as the pasteurization 
step is critical for the risk estimates. 

In conclusion, this article has illustrated some of the challenges 
related to the assessment of the risk for products with extremely low 
risk, proposing a novel methodology to address some of them. It focuses 
on the analysis of the Monte Carlo simulations that result in illness 
occurrence, either graphically (spaghetti and barcode plots) or by cor
relation analysis. The method brings valuable insight for risk assess
ment, being useful to identify which conditions (or combination of 

conditions) are most likely to result in foodborne illness. Although the 
method requires a large amount of computation time (409 h per 10 
billion simulations on a MacBook Pro, M1, 2020), it is mostly due to the 
need to simulate billions of Monte Carlo simulations, one per each 
consumption. Considering the rapid progress in computer performance, 
it is likely that this problem will lose relevance in the near future. 
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Fig. 7. The distributions (blue) of the Log D deviation from the medians at each 
heating temperature: A, the √μ deviation during domestic storage: B, the one 
cell illness probability of dose-response model: C, and its location in scenarios 
with illness (orange bars). The scale and x-axis grid of the above orange barcode 
chart is same as that of the below blue distribution. 

Fig. 8. The distribution (blue) of the post pasteurization time (sum of the 
storage time of distributing, retail and domestic), and its location in scenarios 
with illness (orange bars). The scale and x-axis grid of the above orange barcode 
chart is same as that of the below blue distribution. 

Table 2 
Results of scenario analysis.  

Thermal 
condition 

Average 
Pill

a 
Illness cases per 1 billion 
of sensitivity analysis 

Illness cases per 1 
billion of QMRA MCb 

72 ◦C 15 s 2.22 ×
10− 8 

23 18.8 

72.5 ◦C 20 s 5.48 ×
10− 9 

6 4.4 

74 ◦C 20 s 9.06 ×
10− 10 

0 1.2 

75 ◦C 20 s 5.64 ×
10− 11 

0 0 

85 ◦C 20 s <10− 16 0 Not conducted  

a Average Pill was derived as the average arithmetic risk of simulated scenarios 

(
∑n

i=1
Pill i
n

; n: iteration counts of simulation). 
b The illness cases of each temperature were divided by 2.5 billion iteration. 
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Supplementary data to this article can be found online at https://doi. 
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