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Abstract

Ultrasound (US) technology is recognized as one of the emerging technologies
that arise from the current trends for improving nutritional and organoleptic
properties while providing food safety. However, when applying the US alone,
higher power and longer treatment times than conventional thermal treatments
are needed to achieve a comparable level of microbial inactivation. This results
in risks, damaging food products’ composition, structure, or sensory properties,
and can lead to higher processing costs. Therefore, the US has often been inves-
tigated in combination with other approaches, like heating at mild temperatures
and/or treatments at elevated pressure, use of antimicrobial substances, or other
emerging technologies (e.g., high-pressure processing, pulsed electric fields, non-
thermal plasma, or microwaves). A combination of US with different approaches
has been reported to be less energy and time consuming. This manuscript aims
to provide a broad review of the microbial inactivation efficacy of US technology
in different food matrices and model systems. In particular, emphasis is given to
the US in combination with the two most industrially viable physical processes,
that is, heating at mild temperatures and/or treatments at elevated pressure,
resulting in techniques known as thermosonication, manosonication, and man-
othermosonication. The available literature is reviewed, and critically discussed,
and potential research gaps are identified. Additionally, discussions on the US’s
inactivation mechanisms and lethal effects are included. Finally, mathematical
modeling approaches of microbial inactivation kinetics due to US-based process-
ing technologies are also outlined. Overall, this review focuses only on the uses
of the US and its combinations with other processes relevant to microbial food
decontamination.
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1 | INTRODUCTION

Ultrasound (US) technology, along with high-pressure pro-
cessing, microwave, or pulsed electric fields, is recognized
as one of several promising food processing technolo-
gies (Jermann et al., 2015). It is based on using acoustic
waves with frequencies higher than the human hearing
threshold (>14-16 kHz). These waves can travel and prop-
agate through a material, with liquid media being the
most often used and reported (Soria & Villamiel, 2010).
Depending on the frequency and intensity of the US
waves, two significant categories relevant to food process-
ing can be defined: high-frequency ultrasound (HFU) and
low-frequency ultrasound (LFU).

HFU is based on applying frequencies higher than
100 kHz, typically at low energy intensities (<1 W/cm?).
Main applications can be found in food quality deter-
mination and assurance as a noninvasive technique for
assessing different quality parameters with the help of
sound waves, for example, the assessment of emulsion
stability in the production of dairy products, such as but-
ter, chocolate, and ice cream (Awad et al., 2012). Other
applications of HFU include the estimation of food com-
position, the detection of metal particles and other foreign
materials, and the monitoring of physicochemical and
structural properties during processing and storage (Awad
et al., 2012; Dolas et al., 2019). On the other hand, LFU
uses a lower range of frequencies from 20 to 100 kHz
and higher energy intensities (>1 W/cm?) (Iorio et al.,
2019). Its application induces modifications to the food
properties due to mechanical, physical, chemical, and bio-
chemical changes in the food components. The primary
effect of LFU is based on a phenomenon called cavitation,
and its principles are described in the following section
(McClements, 1995).

2 | TECHNICAL ASPECTS OF US
TECHNOLOGY

2.1 | Cavitation as the driving force of US
technology

The cavitation phenomenon is known to be originated
from a sudden pressure drop due to the propagation
of ultrasonic waves, which triggers the generation of
vapor and gas microbubbles in a liquid medium (Zupanc
et al., 2019). Subsequently, after the pressure recovers, the
microbubbles quickly grow in size during the compression
and expand at low-pressure cycles until there is no capac-
ity to withstand the external pressure, and, finally, they
undergo violent collapse. For instance, the pressure thresh-
old for cavitation in a water medium is above 200 kPa

(Caupin & Herbert, 2006). As a result of the pressure
changes in materials and surroundings in very short bursts
(in the order of microseconds, us), continuous cycles of
microbubbles creation and implosion cycles occur, result-
ing in the release of large amounts of energy and localized
mechanical, thermal, and sonochemical effects. This sit-
uation results in extreme conditions, called “hot spots,”
associated with sudden pressure rises to 100 MPa and
high temperatures of around 5000°K (Ferrante et al., 2007;
Herceg et al., 2013; Scherba et al., 1991). Consequently,
this results in the formation of highly reactive free radi-
cal species of hydroxyl radical (OH") and hydrogen atoms
(H') due to the fragmentation of water molecules (H,0),
a phenomenon called sonolysis. In parallel, hydrogen per-
oxide (H,0,) generation from the OH* species reaction
or organic solutes occurs (Gogate & Kabadi, 2009; Hua
& Thompson, 2000). In addition, other reactive species
are also formed depending on the dissolved gases in the
liquid medium (O,H*, N*, O*). Likewise, the implosion
bursts may be accompanied by local shock waves, lig-
uid high-speed microjets (>100 m/s), high shear forces
(turbulence and eddies), and microstreaming (Adekunte
et al., 2010a; Brilhante Sdo José & Dantas Vanetti, 2012;
Condén et al., 2004; Patil et al., 2009; Piyasena et al.,
2003; Valero et al., 2007; Zupanc et al., 2019). An overview
of the cavitation phenomenon and its effects is given in
Figure 1.

2.2 | Devices and modes of application
The US waves are usually generated by a piezoelectric
transducer, which transforms the electrical energy into
mechanical vibrations. These generated waves may typi-
cally be applied to a liquid product by two devices, either
an ultrasonic bath or a probe system (Figure 2). The ultra-
sonic bath consists of a vessel containing the liquid product
to be treated with the US. The acoustic waves are propa-
gated from transducers, usually located at the bottom of
the device (Chemat et al., 2017). The main advantage of this
type of device is the possibility of simultaneously treating
several samples of different sizes. However, many limita-
tions in terms of microbial inactivation can be seen. For
instance, ultrasonic baths have a generally low acoustic
energy application, and the wave propagation is irregular
because of reflection on the bath walls. This means that the
implosion of the cavitation microbubbles is not heteroge-
neous inside the bath, not providing the treatment with the
same effectiveness in all regions. In addition, only a batch
mode operation can be applied in ultrasonic baths (Mason,
1998; Rodriguez et al., 2018; Santos et al., 2008).

On the other hand, the probe system consists of a trans-
ducer connected from a component known as the horn to
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the sonotrode, the part immersed in the treated medium
for acoustic wave propagation, as shown in Figure 2. Fur-
thermore, an additional part, known as a booster, can
be incorporated into the setup to increase or reduce the
amplitude of the waves during the treatment, a parameter
discussed later. The position of the probe in the ultrasonic
reactor, as well as the geometry and design of the reac-
tor, is important (Lee et al., 2009b). Among the essential
features of the probe in terms of microbial inactivation effi-
ciency are its length, geometry, design, and tip diameter
(Awad et al., 2012; Zupanc et al., 2019). In fact, the acoustic
energy is transmitted to the product through the probe’s tip
to generate the cavitation directly underneath it. This type
of system is the most commonly used US device because
of being more powerful and able to achieve more effective
microbial inactivation than the ultrasonic bath (Chemat
et al., 2017; Rodriguez et al., 2018). Nevertheless, due to
the implosion of the cavitation microbubbles, the probe
tip may be pitted over time, and, therefore, a metal pow-
der may be released into the treated medium (Palma et al.,
2017).

Regarding the application modes of the US, two different
modes can be mentioned: continuous and pulsed. In a con-
tinuous mode, acoustic waves are emitted throughout the
medium, with the transducer continuously excited with an
electrical sine wave. As a result of the continuous supply
of acoustic energy, a notable temperature increase in the
treated medium is recorded, which can damage the food
product. By contrast, better performance in terms of micro-
bial inactivation is achieved with this application mode
(Bermudez-Aguirre & Barbosa-Céanovas, 2012). In contrast,
in the pulsed mode, also called “duty-cycles,” the acoustic
waves are emitted intermittently for a specific time, result-
ing in the excitation of the transducer and the discharge of
very short electrical signals. This is interrupted by pauses

A

Microbubble radius (um)
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for a short time to repeat the electrical discharge, and thus,
the increase in temperature of the treated sample during
the US treatment is lower than in the continuous mode
(Dolas et al., 2019; Zupanc et al., 2019). The duty-cycles are
repeated throughout the treatment, but the microbial inac-
tivation efficiency in pulsed mode is more limited than in
continuous mode (Bermudez-Aguirre & Barbosa-Cénovas,
2012).

2.3 | Factors influencing the inactivation
of microorganisms by US

2.3.1 | Processing factors

In the application of US treatments, several factors directly
impact the extent to which the cavitation threshold can
be reached in a tested medium. Apart from the processing
time, the most important processing parameters, especially

when considering the inactivation of microorganisms,
are:

I. Frequency, expressed in Hz, is known to be inversely
proportional to the microbubble size: in LFU, the
low frequencies applied (20-100 kHz) generate large
cavitation microbubbles leading to an efficient micro-
bial inactivation, different from the HFU (>100 kHz)
where small microbubbles are formed, and the result-
ing cavitation is not enough to inactivate bacteria
(Cao et al., 2010). There are two major frequency
modes to consider during treatments: constant fre-
quency or multi-frequency treatments, for exam-
ple, dual-frequency ultrasound (DFU) (20-40 kHz)
and tri-frequency ultrasound (TFU) (20-40-60 kHz).
According to the review of Bermudez-Aguirre (2017),

. Collapse

— 100 MPa and 5,000 K

- OH', H', and H,0,

— Shock waves, liquid high speed microjets,
high shear forces, and microstreaming

/\ Sinusoidal wave

FIGURE 1

AWAWA
VAVAVAVAVACS

Cavitation phenomenon: growth and collapse of the cavitation microbubble according to the sinusoidal wave and

mechanical, thermal, and chemical effects. Adapted from Jiang et al. (2020).
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the inactivation of microorganisms is most effective The larger the amplitude used, the larger the cav-

within the frequency range of 20—24 kHz. itation microbubbles, thus increasing the cavitation

II. US intensity is considered a parameter whose defini- intensity and the microbial inactivation efficiency dur-
tion differs between groups: some researchers asso- ing the treatment (Lopez-Malo et al., 1999; Manson,
ciate the intensity of the treatment with the nominal 1990). Nevertheless, it is crucial to consider that using
power input, referring to US intensity as the electri- high amplitudes over a long time may cause damage to
cal power of the device used (Cameron et al., 2008; the US equipment and possibly release eroded metal
Su et al., 2010). However, this conception can be particles from the sonication probe to the treated
considered inaccurate enough, as not all electrical medium (Guerrero et al., 2001).
energy is converted and emitted as acoustic waves. IV. Squeeze film refers to the space, commonly expressed
Hence, other authors determine the actual acous- in cm or mm, separating the end of the sonication
tic power delivered to the treated medium during probe and the bottom of the reactor where the treat-
the process by using different methods, for example, ments occur, that is, the probe depth inside the reactor.
with calorimetry. However, this approach can only This parameter’s optimization is fundamental to guar-
be used when assuming that all acoustic energy is antee a homogeneous distribution of the US intensity
dissipated into heat (Yamamoto et al., 2015). As a and, therefore, a homogeneous microbial inactivation
result of this ambiguity, at least four different ways efficiency throughout the treatment medium (Furuta
of reporting US intensity can be found in the litera- et al., 2004).
ture: (1) power capacity (W), (2) power over volume V. Temperature and pressure are two main physical fac-
or weight (W/L, W/kg), (3) power over US emitting tors that can increase microbial inactivation when
area (W/cm?), and (4) total energy emitted per unit of combined with the US. Thus, both parameters and
volume (J/L) (Zupanc et al., 2019). Regarding micro- their influence on decontamination will be discussed
bial decontamination efficiency, the higher the US later in this manuscript.
intensity, the greater the mechanical, thermal, and
sonochemical effects, resulting in a higher inactiva-
tion of microorganisms (Marques-Silva & Sulaiman,  2.3.2 | Product factors
2017).

III. Wave amplitude is expressed in um or %, according to Regarding the assurance of the effectiveness of the treat-
the amplitude level selected in the US device used, ments, it is crucial to consider variables related to the
and because it differs between types of equipment, composition and physical properties of the processed
this parameter has a limited value for comparison product. The most important product properties include
between different setups. However, the wave ampli- viscosity, water activity (a,,), food composition (like the
tude has a strong influence on the microbubble size. presence of suspended solid particles), pH value, dissolved

(a) (b) l \
" Transducer
<«— Horn
<— Booster
Sonotrode
Transducers Treated medium Treated medium
FIGURE 2 Ultrasound application systems: (A) ultrasonic bath; (B) probe system.
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gas, and the volume of the product to be processed. In gen-
eral, microbial tolerance against the US is reported to be
higher in real food products compared with culture media
and model foods due to the protective effects of specific
food components, such as fat content in dairy products or
sugar and acid concentration in fruit juices (Bermudez-
Aguirre et al., 2009; Chemat et al., 2011; Guerrero et al.,
2001; Huang et al., 2006; Jacobs & Thornley, 1954; Raso
et al., 1998; Valero et al., 2007).

2.3.3 | Microbiological factors

Besides processing and product parameters, some bacterial
features may also influence the effectiveness of the inacti-
vation by US treatment. First, the difference between the
monoderm (Gram-positive) and diderm (Gram-negative)
bacteria plays an important role. The latter are generally
more tolerant against the US technology due to the thicker
cell wall and the more tightly adherent peptidoglycan layer
in this group. As a result, the outer membrane may be con-
sidered the primary target for the inactivation of diderm
bacteria, whereas the cytoplasmic membrane and internal
cell structure might be the target for inactivation in the
case of monoderm bacteria (Iorio et al., 2019; Li et al., 2016).
Furthermore, the cell size and shape might also influence
the inactivation, with more significant bacteria being more
sensitive to the US. Also, rod-shaped bacteria are more
sensitive than coccoid forms (Jacobs & Thornley, 1954).
Likewise, aerobic bacteria are more resilient to being inac-
tivated by the US than anaerobic species, and as expected,
the bacterial spore formers exhibit higher tolerance than
vegetative cells (Ahmed & Russell, 1975).

Taking all of the above mentioned into account and
because US technology is not a thoroughly investigated
and standardized technology yet, there are still certain
aspects related to the inactivation of microorganisms by
the US, that is, safety and food quality properties following
the US treatments.

3 | USAND COMBINATIONS WITH
TEMPERATURE AND/OR PRESSURE FOR
INACTIVATION OF MICROORGANISMS
IN CULTURE MEDIA AND FOOD

One of the first studies suggesting the application of the
US as a technology for the inactivation of microorgan-
isms is dated 1928 when Harvey and Loomis investigated
the bactericidal effects of ultrasonic waves in a test tube
(Harvey & Loomis, 1929). Despite exhibiting that the treat-
ment achieved lysis of bacteria and/or severe retardation of
growth, there was no follow-up research at that time, most

in Food Science and Food Safety

likely because the treatment was considered too expen-
sive (Bermudez-Aguirre, 2017). However, in the 1960s, this
technology was investigated more intensively after discov-
ering that the acoustic waves used in submarine warfare
could kill fish (Earnshaw et al., 1995). However, only after
the 1990s, US technology was widely studied as a non-
thermal technology with high potential. For this reason,
and apart from microbial inactivation, a broad range of
application areas for the US were considered, such as fil-
tration, freezing, crystallization, thawing, drying, foaming,
degassing, mixing, tenderization, cooking, emulsification,
cutting, extraction, rehydration, homogenization, separa-
tion, or microbial growth and fermentation (Guimaraes
et al., 2021; Singla & Sit, 2021; Soria & Villamiel, 2010).
The main reason for the intensification of such research
lies in developing powerful, efficient, and more durable
transducers (Ugarte-Romero et al., 2006).

During the last 30 years, significant scientific progress
has been made in describing the mechanisms of cell inac-
tivation induced and/or assisted by the US. This has led to
the investigation of the US with other preservation meth-
ods to overcome some drawbacks of applying the tech-
nology alone, thus improving microbial inactivation while
minimizing food quality loss (Bermudez-Aguirre, 2017).
Table 1 summarizes different possibilities of US-combined
strategies investigated so far.

However, food US-assisted decontamination is currently
not available at a commercialized industrial level. Some
of the reasons probably lie in the lack of scientific docu-
mentation and comprehensive understanding of the basics
of the technology, that is, the cavitation phenomenon and
its possible side effects, lack of expertise and awareness of
the potential users, and the reluctance to abandon conven-
tional treatments (Singla & Sit, 2021). In contrast, accord-
ing to some surveys and market studies, small-medium
enterprises are willing to introduce new technologies in
their food production to increase competitiveness and effi-
ciency, allowing them to access broader markets (Chemat
et al., 2011; Sango et al., 2014).

Therefore, this review aims to gather and discuss studies
performed on US and microbial inactivation, including the
two most commonly combined industrially viable physical
approaches, that is, mild heating temperatures (40-70°C)
and/or treatments at elevated pressure. Additionally, the
mathematical modeling approaches to describe microbial
inactivation kinetics are also outlined. Hereafter, the tech-
nology’s benefits and drawbacks, the need for further
optimization, future research, and potential up-scaling
strategies are presented. In this sense, the inactivation of
bacterial spore formers and biofilms is not included in
this manuscript because recent extensive reviews in these
fields have been summarized in the work of Evelyn & Silva
(2020) and Yu et al. (2020).
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TABLE 1 US-based combination strategies for microbial food decontamination as appearing in the literature and representative

examples
Strategy combined with ultrasound
Mild temperatures, thermosonication (TS)
Elevated pressure, manosonication (MS)
Mild temperatures + elevated pressure, manothermosonication (MTS)
High-pressure processing (HPP)
Pulsed electric fields (PEF)
Nonthermal plasma (NTP)
Ultraviolet light radiation (UV)
High-intensity light pulses (HILP)
Gamma irradiation (GI)
Ohmic heating (OH)
Microwave (MW)
Supercritical carbon dioxide (SC-CO,)
Microfiltration (MF)
Ozone, sonozonation
Osmotic pressure, osmosonication
Steam, sonosteam
Photosensitizers, sonophotodynamic
Antimicrobial substances Natural antimicrobials, e.g.:
- e-Polylysine
- Nisin
Sanitizers, e.g.:
- Peroxyacetic acid
- Slightly acid electrolyzed water
Organic acids, e.g.:
- Citral nanoemulsion
- Thyme essential oil
Enzymatic solutions, e.g.:
- Lysozyme
Surfactants, e.g.:
- Tween 20
Other combinations MS + cysteamine
MTS + cysteamine
TS + PEF + nisin
MTS + PEF
TS + PEF
TS + UV
TS + gallic acid
TS + nisin
TS + HPP

TS + slightly acid electrolyzed water

TS + ascorbic acid
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3.1 |
US

Inactivation of microorganisms by

The application of US alone for microbial inactivation in
food has been widely studied in the last 30 years, and an
overview of the studies is presented in Table 2. As can be
seen from the table, several vegetative bacterial species,
yeasts, molds, and viruses have been investigated in dif-
ferent culture media and food products, showing them
grouped into categories to facilitate comparison between
matrices with similar features, for example, the acidity
level in liquid food products.

Generally, when new technologies for microbial inac-
tivation are investigated, initial studies in culture media
and model foods are performed, which are later trans-
ferred to real food products and matrices. Usually, as
in many other inactivation technologies, higher bacte-
rial tolerance is seen in real food products compared
with model foods and culture media. For instance, the
tolerance of Salmonella Enteritidis against US (13 mm-
diameter probe, 20 kHz, 750 W, 80%, 30 s-on and 30 s-off
pulsed mode) in phosphate-buffered saline (PBS) com-
pared with liquid whole egg was lower in culture media,
achieving a microbial reduction of 3.6 Log;, CFU/mL
and a change in cell concentration of 0.1 Log;, CFU/mL,
respectively, after 10 min of US (<£20°C) (Techathuvanan
& D’Souza, 2018). Indeed, the inactivation of bacteria
and the inactivation of viruses show similar trends (Su
et al., 2010). This fact can probably be related to the food
matrix’s possible protective effect (Bermudez-Aguirre &
Barbosa-Céanovas, 2008; Char et al., 2010; Techathuvanan
& D’Souza, 2018). Therefore, inactivation levels achieved
with the US below 0.5 Log;, CFU/mL or CFU/g cannot be
considered “microbial reduction” when extrapolating from
what is generally accepted in the scientific community
as an increase in the microbial concentration (ISO, 2019;
NACMCEF, 2010).

Some authors consider microbial inactivation assisted
by the US as an “all-or-nothing” phenomenon, which
means that, generally, after applying an efficient treat-
ment, the reviving of ruptured and disintegrated mono-
derm cells, such as Staphylococcus aureus (Li et al., 2016;
Liao et al., 2018b) or Listeria monocytogenes, and diderm
cells, like Escherichia coli (Gera & Doores, 2011; Li et al.,
2016, 2018; Liao et al., 2018b; Wang et al., 2018) is impossi-
ble. This means the absence of subpopulations having any
sublethal injuries which may have the chance of recover-
ing after US treatments (Gera & Doores, 2011). However,
this assumption has been challenged, for example, after
confirming the presence of sublethal cell injuries follow-
ing US treatment in experiments conducted in vitro, for
example, in phosphate buffer (pH 7.0) with E. coli and Lac-
tobacillus rhamnosus (Ananta et al., 2005) as well as in situ,

in Food Science and Food Safety

for example, in almond milk, contaminated with E. coli
0157:H7 and L. monocytogenes (Iorio et al., 2019).

Furthermore, some bacterial species have shown toler-
ance to the US. For example, the US’s inactivation of S.
aureus in whole raw milk, orange juice, and phosphate
buffer (pH 7.0) was much lower than other microorgan-
isms investigated. As a result, a reduction of the cell
counts of S. aureus by 0.6 Log;o CFU/mL (22 mm-diameter
probe, 24 kHz, 400 W, 100%, continuous mode), 0.2 Log;,
CFU/mL (13 mm-diameter probe, 20 kHz, 700 W, 30 um,
5 s-on and 10 s-off pulsed mode), and 0.3 Log;; CFU/mL
(13 mm-diameter probe, 20 kHz, 800 W, 114 um, 3 s-on and
2 s-off pulsed mode) were achieved, respectively, depend-
ing on the US setup (Bhavya & Hebbar, 2019; Chantapakul
et al., 2019; Marchesini et al., 2015). Likewise, Baumann
et al. (2005) compared the US tolerance (13 mm-diameter
probe, 20 kHz, 750 W, 0.46 W/mL, 100%, continuous mode)
of eight strains of L. monocytogenes of different origins,
such as human, animal, food, or their mutations, in saline
solution. From this study, L. monocytogenes 10403S, iso-
lated from mice, was found to be the most tolerant strain
against the technology.

3.1.1 | Inactivation in high-acid liquid foods

The US application can be regarded as included in a
strategy to extend the shelf-life of high-acid fruit juices
by delaying the growth of bacteria, yeasts, and molds
throughout the storage time. The mesophilic aerobic bac-
teria (MAB) and yeast and molds (YM) are important in
these products, and their development has been investi-
gated after the US processing of the juice and throughout
storage. For instance, Gémez-Lopez et al. (2010) evalu-
ated the inactivation of MAB and YM in calcium-added
orange juice by the US (13 mm-diameter probe, 20 kHz,
500 W, 89.25 um, continuous mode). After 8 min of treat-
mentat10°C, reductions of 1.4 and 0.6 Log;, CFU/mL were
achieved, respectively, resulting in a shelf-life of 4°C up to
10 days, extended by 4 days compared with the untreated
juice at the same temperature. Several examples of the
preservation of fruit juices with the US can be found in
the literature, as seen in Table 2. Recently, de Albuquerque
et al. (2021) evaluated the potential preservation effect of
the US in Brazilian nopal (Opuntia ficus-indica) beverage.
Treatments (ultrasonic bath, 42 kHz, 240 W, 0.22 W/mL,
continuous mode) were applied for 40 min (30°C) to
assess the products’ microbiological quality during 28 days
of storage at 4°C. Counts of MAB, YM, coliforms, and
Salmonella spp. were reported. As a result of US treat-
ment, only YM were detected in the beverage and only
on day 28 of storage, while the other microbial groups
were under the detection limit at all times during storage.
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However, US treatment has been considered for preserv-
ing fruit juices against spoilage and the inactivation of
pathogenic bacteria. For example, the inactivation of E.
coli O157:H7 was evaluated in strawberry juice, a com-
monly investigated fruit juice matrix. When US (12.5 mm-
diameter probe, 20 kHz, 750 W, 100%, continuous mode)
was applied for 5 min at room temperature, a reduction of
5.0 Log;y CFU/mL of the pathogenic microorganism was
achieved (Yildiz & Aadil, 2020).

3.1.2 | Inactivation in low-acid liquid foods
The potential of US against microorganisms has also been
studied in low-acid products, where the inactivation of
pathogenic bacteria was more of interest when compared
with high-acid products. For example, the survival of S.
enterica in rice beverage after treatment with the US
(5 mm-diameter probe, 20 kHz, 130 W, 2 s-on and 10 s-off
pulsed mode) was evaluated during 13 days of storage at
4°C. After 10 min of treatment (<48°C), the cell counts of
the microorganism were reduced below the detection limit
(1.0 Log;o CFU/mL) and remained undetectable through-
out the storage time (Campaniello et al., 2018). Likewise,
the preservation of animal milk, like cow and camel, and
vegetable beverages, for example, from rice or almond by
use of US, have been investigated. As an example, Iorio
et al. (2019) evaluated the survival and growth of E. coli
0157:H7 and L. monocytogenes in almond milk after the US
(5 mm-diameter probe, 20 kHz, 104 W, 6 s-on and 6 s-off
pulsed mode) and during storage at 4°C for 14 days. After
8 and 2 min of treatment, both microorganisms achieved
cell count reductions of 1.3 Log;; CFU/mL. Furthermore,
in the case of E. coli 0157:H7, the growth rate (umax)
was reduced from 1.2 to 0.8 Log;o CFU/mL/day compared
with the untreated samples. On the contrary, L. monocyto-
genes remained potentially in a state of sublethally injury,
exhibiting a lag phase for 4.9 days.

3.1.3 | Inactivation in fruits and vegetables

On the other hand, the efficiency of US treatments in food
preservation has been evaluated in several fruits and veg-
etables by immersing the solid food product in a liquid
medium, generally water, where the US is emitted. For
instance, the inactivation of MAB and YM was assessed
in strawberry fruits by Cao et al. (2010). The inactivation
achieved with US (ultrasonic bath, 40 kHz, 350 W, contin-
uous mode) after 10 min of treatment (20°C) was 0.8 and
0.9 Log;o CFU/g in the counts of MAB and YM, respec-
tively, and resulted in a reduction of 43.7% of the decay
index in comparison with the untreated samples after 8

inFood Science and Food Safety

days of storage at 5°C. Regarding the preservation potential
in fresh-cut vegetables, Fan et al. (2019a) applied the US
to extend the shelf-life of modified atmospheric fresh-cut
cucumber. As a result, US (15 mm-diameter probe, 20 kHz,
226 W/cm?, 10 s-on and 5 s-off pulsed mode) was applied to
inhibit the growth of MAB and YM. As a result, treatments
with a duration of 10 min (<22°C) achieved reductions up
to 1.0 and 0.8 Log;y CFU/g in the counts of MAB and YM,
respectively. This improved the microbiological quality of
the treated samples compared with the untreated samples
over a storage period of 15 days at 4°C.

3.1.4 | Inactivation in meat products

Moreover, the US has been studied as a technology for
microbial decontamination in other solid food, such as
meat products. For instance, Sams & Feria (1991) studied
the inactivation of MAB in broiler drumstick skin by the
US (ultrasonic bath, 47 kHz, 200 W, continuous mode) and
growth over 14 days-storage times. Treatments up to 30 min
(<40°C) did not lead to any significant inactivation effects,
probably due to irregular skin surface, providing a physical
shield to microorganisms. Indeed, the MAB cell counts in
the US-treated samples on day 7 of storage were lower than
the untreated samples, but the cell counts in both treated
and untreated samples reached the same level at the end
of the storage time (day 14). This could be explained due
to increased extraction of nutrients from the food, lead-
ing to a faster rate of microbial growth in the products. In
the same way, Pifion et al. (2019) evaluated the inactiva-
tion of total psychrophilic and mesophilic aerobic bacteria
(PMAB) and lactic acid bacteria (LAB) in chicken meat.
US treatments (probe, 20 kHz, 27.6 W/cm?, continuous
mode) applied for 5 min at 4°C led to the inhibition of the
microbial growth in samples during 7 days of storage at
4°C.

3.1.5 | General statements on US
Overall, studies that evaluated the influence of US pro-
cessing parameters during microbial inactivation found
that higher intensity, as well as lengthier treatment times
and amplitude levels, lead to higher inactivation rates of
bacteria (Campaniello et al., 2018; Margean et al., 2020;
Patil et al., 2009; Scherba et al., 1991; Starek et al., 2021;
Tiirken & Erge, 2017; Wang et al., 2010). In addition, in the
case of continuous treatments, faster flow rates are consid-
ered more efficient in inactivating microorganisms (Gracin
et al., 2016; Valero et al., 2007; Van Hekken et al., 2019).
An essential consideration of US processing is the
increased sample temperature recorded because of the
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nature of the treatment. For instance, US treatments
applied in fruit and vegetable juices increased temperature
by around 50°C during 15 min of treatment (13 mm-
diameter probe, 20 kHz, 100 W, 70%, continuous mode)
(Margean et al., 2020). It is easily understood that control-
ling and monitoring the temperature during the treatment
is crucial to evaluate the microbial inactivation effect of
US and separate its impact on the nutritional, organolep-
tic, and sensorial food properties from that of heat. On
the other hand, studies in the presence or absence of the
temperature effects concluded that higher microbial lethal
effects were seen when temperature increased during the
US treatments (Tiirken & Erge, 2017).

Generally, effective microbial inactivation that will
ensure microbial food safety requires long and high-
intensity treatment, often associated with increased energy
demands and a higher risk for more significant changes
in the treated food’s chemical, nutritional, and sensory
properties. This is probably one of the reasons that hin-
dered a possible introduction of the US to any industrial
and commercial scale application of food decontamina-
tion (Chen et al., 2020; Lee et al., 2013; Sala et al., 1995).
However, there are other food applications, such as extrac-
tion, emulsification, or homogenization, where the US
became an established technology for large-scale com-
mercial applications. Furthermore, scale-up applications
on improving system designs for the higher efficiency of
large-scale continuous flow systems for each application
have been reported (Patist & Bates, 2008). In addition, cer-
tain pathogenic microorganisms show tolerance against
US treatment alone, such as S. aureus species and some
L. monocytogenes strains (Baumann et al., 2005; Bhavya &
Hebbar, 2019; Chantapakul et al., 2019; Marchesini et al.,
2015). For this reason, some authors recommended that
the US should be combined with other hurdle strategies
with greater antimicrobial potency, such as mild heat-
ing temperatures, treatments at elevated pressure, use of
antimicrobial substances, or other emerging technologies
to obtain better inactivation results (Valero et al., 2007;
Wang et al., 2015). Indeed, the majority of the studies
presented in Table 2 are concerned with the inactivation
of spoilage microorganisms rather than with pathogenic
microorganisms, being clear that there is a lack of stud-
ies on the inactivation of pathogenic microorganisms
with the US. One of the reasons may be potential safety
issues associated with the high inocula with pathogenic
microorganisms needed in the setup of such experiments.

Consequently, research in microbial food decontamina-
tion with the US has focused on further increasing its
efficacy through its application in combination with other
decontamination methods. In this sense, available liter-
ature reported higher microbial inactivation levels with
lower processing times when combining US with mild

heating temperatures and/or treatments at elevated pres-
sure. Moreover, the combination of US with antimicrobials
solutions (Francisco et al., 2018; Millan-Sango et al., 2015,
2016; Zhang et al., 2021a) and with other emerging tech-
nologies, for example, pulsed electric fields or blue light
treatment (Bhavya & Hebbar, 2019; Lyu et al., 2016; Saee-
duddin et al.,, 2017) has also been studied, but these
combinations are out of scope of this review.

3.2 | Inactivation of microorganisms by
thermosonication

The limited potential of the US to inactivate microor-
ganisms at low temperatures (<40°C) seemed to have
motivated scientists to investigate possible combinations of
US with other inactivation approaches, such as heat treat-
ments at mild temperatures (40-70°C) and atmospheric
pressure, a treatment known as thermosonication (TS).

3.21 |
TS

Mechanism of action and beginning of

During TS treatments, a reduction of surface tension and
viscosity of the medium occurs due to the temperature
increase (Lopez-Malo et al., 1999). Thus, a higher vapor
pressure is required in the medium to achieve the forma-
tion of microbubbles. As a result, a large number of smaller
microbubbles are generated in TS treatments. Because of
that, the released energy during the microbubble collapse
is reduced, and the cavitation intensity decreases accord-
ingly (Guerrero et al., 2001; Mason, 1998; Patist & Bates,
2008). However, the tolerance of microorganisms to the US
seems to be also reduced due to the sum of the damag-
ing effects of cavitation and mild heat (Raso et al., 1998).
In comparison with the conventional thermal processes,
temperatures applied during TS are significantly reduced
(by 16-55%) while achieving the same lethality values (Das
et al., 2020) and maintaining food quality (Piyasena et al.,
2003).

An optimum temperature range for TS has been con-
sidered the one at which the viscosity of the medium
is low enough to generate a violent enough microbub-
ble collapse, which, in turn, allows for a reasonable
microbial inactivation (Patist & Bates, 2008). Most stud-
ies have reported enhanced microbial inactivation when
temperatures above 50°C are combined with the US
(Bermudez-Aguirre, 2017; Dubrovi¢ et al., 2011). How-
ever, it has also been reported that when temperature
increases higher than the optimum temperature, the com-
bined effect is reduced, resulting in no differences in the
lethality between TS and the heat-based treatment alone at
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the same temperature (Ugarte-Romero et al., 2006, 2007;
Zenker et al., 2003). This critical temperature value is
referred to as upper temperature limit and differs depend-
ing on the target microorganisms and the treated media
(Ugarte-Romero et al., 2006). Table 3 gives an overview
regarding some of the upper temperature limits found in
the literature for TS treatments.

The first reports on combining US and mild heat were
first released in the 1980s, when US at 20 kHz, 160 W
was used in assistance to thermal treatments (<62°C) for
inactivation of S. aureus in acid buffer media (pH 6.6)
(Ordofiez et al., 1984). The obtained results suggested that
the combination of both treatments was much more effec-
tive in terms of inactivation regarding the treatment time
and energy applied, compared with both treatments used
individually. Since then, a significant number of studies
have been done regarding microbial inactivation by TS, as
summarized in Table 4. As can be seen from the studies,
the inactivation of microorganisms by TS in different food
products, such as milk, apple cider, or fruit juices, has been
reported. In addition, TS effectiveness on microbial inacti-
vation was frequently compared with inactivation results
obtained with US and thermal treatment alone.

3.2.2 | Inactivation in high-acid liquid foods

Decontamination by TS of apple products, such as apple
juice or apple cider, may be the most investigated area
when treating high-acid food products with TS. Baumann
et al. (2005) studied the effects of TS treatments (13 mm-
diameter probe, 20 kHz, 750 W, 0.46 W/mL, 100%, con-
tinuous mode) on the inactivation of L. monocytogenes in
apple cider and reported an improved microbial inactiva-
tion by using TS, but also attributed part of the inactivation
to the low pH value of the product. An additional 5.0 Log;
CFU/mL reduction of L. monocytogenes was achieved after
6 h of the TS-treated apple cider storage at 20°C. These
results indicate that TS might cause sublethal injuries,
as seen in other studies (Anaya-Esparza et al., 2017). In
another study with apple cider, where TS was compared
with heat treatment to inactivate E. coli K12, only applying
thermal treatment at 40°C for 20 min resulted in no micro-
bial inactivation (Ugarte-Romero et al., 2006). However,
when TS (probe, 20 kHz, 0.46 W/mL, continuous mode)
was applied at the same conditions, a reduction of 5.3 Log,
CFU/mL of the same microorganisms was achieved. This
study set the upper temperature limit at 40°C, obtaining a
lower microbial inactivation (5.1 Log;; CFU/mL) with TS
at 60°C during the same processing time (20 min). Nev-
ertheless, in work conducted by Baumann et al. (2005),
the higher inactivation of L. monocytogenes in apple cider

Overview of upper temperature limit values found in different matrices and microorganisms when applying TS

TABLE 3

References

Temperature ranges Upper temperature limit

US operating conditions

Microorganism

Food/model system

Culture media

Zenker et al., 2003

60°C

48-67°C

Probe, 19.3 kHz, 800 W,

Escherichia coli K12

Phosphate buffer

55 um
Probe (13 mm), 20 kHz,

Guerrero et al., 2001

45°C

35, 45, and 55°C

Saccharomyces cerevisiae

Sabouroud broth (pH

600 W, 83.3 um

3.0)
High-acid liquid foods

Ugarte-Romero et al.,

40°C

40-60°C

Probe, 20 kHz, 0.46 W/mL

Escherichia coli K12

Apple cider

2006
Zenker et al., 2003

60°C

48-67°C

Probe, 19.3 kHz, 800 W,

Escherichia coli K12

Orange juice

55 um

in Food Sciexce and Food Safety

Low-acid liquid foods
UHT whole goat’s milk

Bernardo et al., 2022

45.9-74.1°C 70°C

Ultrasonic bath, 40 kHz,

Escherichia coli O157:H7

54.4W, 1.9 kJ/mL
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was seen at the highest temperature investigated (60°C),
without an upper temperature limit reported.

Microbial inactivation in other fruit juices assisted by
TS has also been widely investigated, comparing the effi-
cacy of the treatment against conventional heat processing.
For instance, the inactivation of E. coli and Lactobacillus
acidophilus in orange juice achieved the optimal tempera-
ture range and a synergistic lethal effect from 48 to 60°C
and from 52 to 60°C, respectively (Zenker et al., 2003).
Furthermore, it was reported that TS (probe, 19.3 kHz,
800 W, 55 um, continuous mode) required 3.5-times and
1.5-times shorter processing time for the inactivation of E.
coli and L. acidophilus, respectively, than heat treatments
to achieve the same level of inactivation. In addition, the
lethal temperature values were reduced from 68 to 56°C
and from 60 to 52°C for the inactivation by TS of E. coli
and L. acidophilus, respectively. Likewise, the efficacy of
TS (10 mm-diameter probe, 20 kHz, 400 W, continuous
mode) was also evident by the reduction of the processing
time to achieve inactivation of 5.0 Log;, CFU/mL of veg-
etative cells of Bacillus subtilis in Chinese bayberry juice.
More specifically, when thermal treatment at 63°C was
used, 36.9 min was needed to achieve this reduction. In
contrast, 9.6 min was required with TS treatment at the
same temperature, indicating a decrease in the treatment
time by more than 74% (Li et al., 2019).

A comparison between TS, US, and heat treatment
was performed by Demir & Kiling (2019) in a study
focused on the inactivation of E. coli K12 in pumpkin
juice. The least effective treatment was US (23°C), where
a difference of only 0.4 Log;, CFU/mL in the cell concen-
tration was achieved, followed by the thermal treatment
(60°C), which resulted in the microbial reduction of 3.6
Log;, CFU/mL. However, TS (ultrasonic bath, 37 kHz,
150 W, continuous mode) at 60°C resulted in bacterial
reductions of 6.2 and 6.6 Log;, CFU/mL for treatments
applied in continuous and batch mode, respectively. It
was also concluded that a decrease of 71% in the treat-
ment time could be achieved by using TS instead of
conventional heat treatment to reach the same level of
microbial inactivation. Regarding the influence of wave
amplitude during TS, most studies pointed out its rel-
evance to microbial inactivation potential. Nevertheless,
one study in apple juice and molds revealed that when
applying TS treatments (12.7 mm-diameter probe, 20 kHz,
600 W, continuous mode) at 60°C during different process-
ing times (3, 6, and 9 min), similar inactivation levels of
Penicillium expansum and Rhodotorula spp. was achieved
regardless the value of wave amplitude (60-120 wm)
(Jambrak et al., 2017).

In addition, the inactivation of spoilage yeasts by TS
has been studied. For example, the inactivation of Bret-
tanomyces bruxellensis in red wine, considered the main

i Foud Science and Food Safety

spoilage microorganism in the wine industry, was more
effective with TS (12.7 mm-diameter probe, 20 kHz, 600 W,
120 um, continuous mode) at 43°C compared with the US
(25°C) during 3 min (Gracin et al., 2017).

3.2.3 | Inactivation in low-acid liquid foods
Another widely investigated application of TS is cow’s milk
processing. Several types of this low-acid matrix are stud-
ied, such as different fat content (whole, fat free, or low
fat), raw milk or ultra-high-temperature (UHT) treated, or
even reconstituted milk powder. For instance, TS (22 mm-
diameter probe, 24 kHz, 400 W, 2.85 W/cm?, 120 um,
continuous mode) has been applied to reduce process-
ing time in the conventional batch milk pasteurization
(63°C by 30 min), that is, a low-temperature-long-time
treatment, to achieve a reduction of 5.0 Log;; CFU/mL
of nonpathogenic L. innocua, a bacterial surrogate for a
pathogenic L. monocytogenes. Furthermore, the applica-
tion of TS treatment in batch mode in a walled vessel
resulted in 20 min treatment time reduction, that is, a
63°C/10 min treatment, compared with the conventional
treatment (63°C, 30 min) (Bermuadez-Aguirre et al., 2009).
Moreover, thermal treatment at the temperature of 63°C
for a treatment time of 10 min resulted in a difference of
only 0.5 Log;;, CFU/mL in the concentration of L. innocua
(Bermudez-Aguirre et al., 2011).

3.24 | General statements on TS

The main process parameters that may influence the inac-
tivation of microorganisms by TS are temperature and
processing time, but the influence of other parameters,
which have been mentioned in the previous section where
US is described, such as amplitude and acoustic intensity,
is also important (Adekunte et al., 2010a; Amador-Espejo
et al., 2020; Guerrero et al., 2001; Herceg et al., 2012;
Ugarte-Romero et al., 2007; Zenker et al., 2003). Over-
all, the microbial inactivation levels achieved in almost
all cases are higher than in US treatments, resulting in
highly reduced processing times to achieve an optimal
level of food decontamination. Likewise, for most stud-
ies where TS has been compared with conventional heat
treatments or even the US, TS is seen as an alterna-
tive method to reduce the microbial and thermal load
applied to the product. Therefore, it can be considered
an energy-efficient alternative to traditional thermal treat-
ments. However, efficient process parameters should be
considered, such as the optimal microbial inactivation
level, without compromising the quality of the processed
food.
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Based on the literature data, just some apple products
and different types of cow milk products have been inves-
tigated in depth. Thus a wide processing window can be
identified, and further inactivation and validation studies
should be performed to confirm these results, especially
for new products that have not been assessed so far, or
already investigated products where the upper tempera-
ture limit for different microorganisms was not stated,
being required to be found in terms of optimizing the
efficiency of TS in microbial food decontamination.

3.3 | Inactivation of microorganisms by
manosonication

Another approach to enhance antimicrobial efficacy is
using the US at elevated pressure. The elevated pressure
in the treated medium is typically 200—500 kPa, and the
technology is called manosonication (MS). In MS, the tem-
perature is generally maintained at lower values, less than
40°C.

331 |
MS

Mechanism of action and beginning of

As a result of the combination of US and pressure, a more
aggressive microbubble implosion is generated (Whillock
& Harvey, 1997), increasing the free radical formation
(Vercetetal., 1998) and the subsequent enhanced mechani-
cal disruption of microbial cells and microbial inactivation
(Raso et al., 1998). In this sense, due to the increased pres-
sure in the US, more than fourfold microbial lethal effect
could be achieved compared with only US, making MS a
potential technology to inactivate vegetative cells at room
temperature (Condén et al., 2004).

After investigating seawater disinfection with cavita-
tion phenomenon and different pressure inlets, Badve
et al. (2015) observed that the microbial inactivation rate
increased up to a certain pressure level, but above a cer-
tain level, further pressure elevation indicated no further
reduction. The decrease in the bactericidal effectiveness of
MS is suggested to be associated with a drop in the num-
ber of collapsing cavitation microbubbles. This happens
because of the incapacity of US waves to overcome the sum
of the cohesive forces of the reached overpressure and the
ones present in the liquid molecules (Condén et al., 2004).
For this reason, similar to TS, where the upper temperature
level is of major importance, in MS, it is crucial to deter-
mine the upper pressure limit to achieve the maximum
synergistic effect for microbial inactivation.

A pioneering investigation of MS was conducted by
Neppiras & Hughes (1964), who studied the possibility of

working with additional relative pressure to increase yeast
disintegration when applying US treatments. However, the
reported effect was very slight because the treatments were
performed with very weak acoustic fields. There need to
be more studies focusing on MS and even fewer studies
where the treated medium was real food. In Table 5, several
studies in which MS has been investigated for microbial
inactivation so far are listed, mostly focusing on assess-
ments in culture media, where the preliminary knowledge
of the lethal microbial potential of MS was found.

3.3.2 | Inactivation in culture media
In the study of Raso et al. (1998), an MS treatment (13 mm-
diameter probe, 20 kHz, 450 W, continuous mode) was
applied in Mcllvaine citrate-phosphate buffer (pH 7.0)
to study the inactivation of Yersinia enterocolitica. The
upper pressure limit was found at 400 kPa because no fur-
ther improvement of the inactivation was reached with
a pressure higher than 600 kPa. Further in the study, an
exponential reduction in the D value from 4 to 0.4 min was
achieved with increased wave amplitude from 21 to 150 um
(30°C, 200 kPa). Assessments on the same medium with
MS treatments (13 mm-diameter probe, 20 kHz, 450 W,
90 um, continuous mode) at 40°C resulted in a signifi-
cant decrease of the D values of L. monocytogenes from
5.70 to 2.5 min when pressure increased from the atmo-
spheric level (~100 kPa) to 200 kPa (Mafias et al., 2000a).
Moreover, a linear relationship was reported between the
amount of US power applied and the D value reduction.
Other microbial assessments include the work of Pagin
et al. (1999b), who investigated the application of MS
treatments (13 mm-diameter probe, 20 kHz, 450 W, contin-
uous mode) at 40°C in Mcllvaine citrate-phosphate buffer
(pH 7.0) for inactivating Streptococcus faecium, L. mono-
cytogenes, S. Enteritidis, and Aeromonas hydrophila. The
obtained results suggested that the level of wave ampli-
tude was more significant than the pressure applied in
reducing the D values. When amplitude was increased
from 62 to 150 um, a sixfold reduction was recorded, com-
pared with the fivefold reduction when relative pressure
increased from O to 400 kPa. Moreover, when comparing
MS with thermal treatment alone, the advantage of lower
microbial recovery potential was seen in MS, indepen-
dent of the treated medium used. In addition, the cellular
damage caused by MS was also evaluated in the men-
tioned bacteria. The experimental results suggested that
irreversible damages are found when applying this tech-
nology, meaning an advantage compared with reversible
cellular damages caused by heat treatments. Similarly, a
reduction of 3.5 Log;, CFU/mL of Cronobacter sakaza-
kii in Mcllvaine citrate-phosphate buffer (pH 7.0) after
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1 min of MS treatment (13 mm-diameter probe, 20 kHz,
450 W, 117 um, continuous mode) at 35°C and 200 kPa
was achieved, without resulting to any sublethal cellular
injuries (Arroyo et al., 2011). This study reported an expo-
nential relationship between the ultrasonic power applied
and the D value reduction.

Likewise, the tolerance of heat-shocked cells of L. mono-
cytogenes against MS (13 mm-diameter probe, 20 kHz,
450 W, 117 um, continuous mode) was evaluated by Pagan
et al. (1999a). Experimental results suggested that the
development of heat-shock proteins leads to a higher toler-
ance when applying conventional heat treatments, but the
generation of this type of structure does not seem to affect
their tolerance to MS.

3.3.3 | Inactivation in real foods

On the other side, few works were conducted on real food
products treated by MS compared with the research on real
food products carried out in US and TS. This could proba-
bly be because of the more complex configurations of MS
because a system to apply and control the pressure must be
incorporated. As an example, apple juice products treated
by MS (13 mm-diameter probe, 20 kHz, 450 W, 110 or
117 um, continuous mode) at 35°C and 200 kPa resulted in
the inactivation of E. coli O157:H7, L. monocytogenes, and C.
sakazakii. Among the bacteria, C. sakazakii was the most
resilient against MS, achieving reductions of only 1.1 Log;
CFU/mL after 1 min or even with longer treatment times.
However, a reduction of 4.0 Log;, CFU/mL was reached
in the inactivation of E. coli O157:H7 and L. monocytogenes
after 3.6 and 7.2 min of MS, respectively (Arroyo et al., 2012;
Guzel et al., 2014). Another example of real food treated by
MS is found in raw whole cow’s milk and the inactivation
of E. coli, P. fluorescens, and S. aureus. MS treatments (two
40 mm-diameter probes, 20 kHz, 90 W/cm?, 75%) at 36°C
and 225 kPa for 4 min resulted in the microbial reduction
of 1.6 Log;y CFU/mL, except for S. aureus inactivation, due
to close to inactivation of 1.0 Log;o CFU/mL was achieved
(Cregenzan-Alberti et al., 2014).

3.3.4 | General statements on MS

Microbial inactivation by MS can be seen as a promis-
ing preservation technology of food products due to its
antimicrobial efficiency compared with conventional heat
treatments and other processes described in this review.
Furthermore, it is crucial to determine the upper pres-
sure limit to achieve the maximum synergetic effect of
microbial inactivation. The application of elevated pres-
sure values in MS does not necessarily result in greater

lethal effects, contrary to what is observed with other
processing parameters, such as wave amplitude, where
higher values generally lead to higher levels of microbial
inactivation.

Considering the results obtained so far, which were
obtained in culture media, studies in real food products are
lacking, and more studies are required to assess the impact
of MS on microbial inhibition, such as the inactivation of
different microbial species, including viruses, molds, and
yeasts, in different food matrices.

3.4 | Inactivation of microorganisms by
manothermosonication

Manothermosonication (MTS) is the inactivation strategy
resulting from the combination of elevated pressure (200-
500 kPa), mild temperatures (40-70°C), and the US. In the
literature and review manuscripts, very often, this strategy
is claimed to have the highest efficiency in terms of micro-
bial inactivation compared with mild temperature, US, TS,
and MS treatments, and it even requires lower process-
ing times and temperatures during its effective operation
(Dolas & Kaur, 2018).

341 |
MTS

Mechanism of action and beginning of

As mentioned, combining the US with mild heating tem-
peratures reduces the cavitation intensity. However, one
option to overcome this issue is by increasing the pressure
in the treated medium, which leads to a pressure increase
inside the microbubbles, and consequently results in a
more rapid and violent collapse of the bubbles (Lorimer &
Mason, 1987; Muthukumaran et al., 2006; Raso et al., 1999;
Whillock & Harvey, 1997). A schematic representation of
the increase in the size of microbubbles during MTS and its
comparison with the size increases resulting in US-based
technologies described in this review is shown in Figure 3.

The inactivation effectiveness of MTS is related to the
antimicrobial effects of thermal and MS treatments, so
when these three hurdles (sonication, mild temperatures,
and elevated pressure) are combined, additive or even syn-
ergetic effects are observed, which can lead to improved
microbial inactivation compared with the corresponding
single treatments (Raso et al., 1998). Furthermore, as a
result of this combination, a more rapid microbial inactiva-
tion can be achieved, requiring half of the treatment time
at the optimum temperature compared with the necessary
time of conventional heat treatments (Condon et al., 2004).

In MTS treatments, the crucial point is determining
the upper limits of temperature and pressure to identify
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the optimum processing window for a synergistic effect.
For instance, Raso et al. (1998) found an upper tempera-
ture limit of 58°C when the pressure was set at 200 kPa
for MTS treatment aiming at inactivating Y. entercolitica
in Mcllvaine citrate-phosphate buffer (pH 7.0). Another
relevant correlation of these parameters regarding energy
consumption was found by Raso et al. (1999), who demon-
strated that if the medium temperature increases during
the treatment, the pressure applied in the system must also
be increased to achieve constant power output. Further-
more, it has been demonstrated that the lethal effects of
MTS at the same pressure level were more pronounced
when higher temperatures were applied rather than with
the increase in the pressure level (Kahraman et al., 2017).

First studies involving and building special equipment
to realize MTS treatments were performed by Sala et al.
(1995) and Raso et al. (1998). Since then, MTS technol-
ogy has been studied for microbial inactivation in buffered
media, fruit and vegetable juices, and liquid egg prod-
ucts. The most recent and relevant data are collected and
presented in Table 6.

3.4.2 | Inactivation in culture media

The preliminary studies investigated the lethal effects of
MTS (13 mm-diameter probe, 20 kHz, 450 W, 117 um, con-
tinuous mode) in different culture media and bacterial
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species. For instance, the inactivation of L. monocytogenes
by MS in a Mcllvaine citrate-phosphate buffer (pH 7.0)
showed an additive effect of elevated pressure and US
compared with the application of US only, but bacteria
inactivated with MTS indicated synergistic inactivation
effects in temperature ranges of 62—68°C (Pagan et al.,
1999a). Similarly, in Mcllvaine citrate-phosphate buffer
(pH 7.0), the influence of different a,, values on the inac-
tivation of Salmonella spp. strains were studied after MTS
treatment (13 mm-diameter probe, 20 kHz, 450 W, 117 um,
continuous mode) (65°C, 175 kPa). When a,, dropped
from >0.99 to 0.93 and heat treatments at 65°C were
applied, the D value of S. Senftenberg 775 W increased up to
18-folds (Alvarez et al., 2006), while in the case of S. Enter-
itidis, tolerance increased up to 30-folds for dropping a,,
from 1 to 0.96 (Alvarez et al., 2003). However, due to the
application of MS and MTS, D values hardly increased in
S. Senftenberg 775 W (Alvarez et al., 2006) or only twofold
in S. Enteritidis (Alvarez et al., 2003). This indicates a
potential advantage of MS and MTS for the inactivation
of microorganisms in media with low a,, values. However,
additive effects were seen when MTS and MS treatments
were applied in media with high a,, values.

Furthermore, when evaluating the reduction of D values
in heat-shocked L. monocytogenes cells (180 min, 45°C) in
buffered media, the tolerance of bacteria following expo-
sure to heat treatments of 62°C increased by sixfold (Dg,
of 1.8 min) when compared with the nonheat exposed
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Schematic representation of the microbubble size increase during US-based processing technologies as a result of the
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cells (Dg, of 0.24 min). However, when applying MTS
(13 mm-diameter probe, 20 kHz, 450 W, 117 um, continuous
mode), synergistic effects regarding microbial inactiva-
tion were seen in the range 62—68°C at 200 kPa with the
heat-shocked cells (Pagan et al., 1999a). In addition, the
sensitivity of both heat-shocked and nonheat-shocked cells
was the same (D) of 1.6 min) after the MS treatments
(40°C, 200 kPa). Similarly, Pagan et al. (1999b) investigated
the bacterial tolerance of S. faecium, L. monocytogenes,
S. Enteritidis, and A. hydrophila in Mcllvaine citrate-
phosphate buffer (pH 7.0) after MTS (13 mm-diameter
probe, 20 kHz, 450 W, 117 um, continuous mode). Addi-
tive lethal effects of heat and MS were seen in all microbial
species except S. faecium, where synergistic effects were
recorded at 62°C and 200 kPa.

Recently, Condon-Abanto et al. (2018) suggested that the
simultaneous application of MTS may provide additive or
synergistic effects depending on the studied target bacte-
rial species. For instance, after MTS treatments in MclIl-
vaine citrate-phosphate buffer (pH 7.0), bacteria such as
A. hydrophila and Y. enterocolitica showed additive effects,
but synergistic effects were seen in S. bayanus, L. mono-
cytogenes, Salmonella spp., and Bacillus spp. However,
further studies suggested that microorganisms recognized
for their high heat tolerance are, at the same time, the
ones in which higher synergistic effects are seen when
MTS is applied. This fact proves there is a reduction in
the treatment time to achieve a certain level of microbial
inactivation compared with heat treatments. In addition,
the lowest synergistic effect is seen for bacterial vegetative
cells, whereas the largest synergistic effect is reported for
yeasts and bacterial spores (Raso et al., 1998).

The effectiveness of MTS microbial inactivation has
often been compared with other US-based treatments
described previously in this review. For example, in a study
about the lethal effects of US, TS, MS, and MTS (12.5 mm-
diameter probe, 20 kHz, 6 W/mL, 124 um, continuous
mode) on E. coli K12 in a PBS, results indicated that the
inactivation rate was higher in treatments where mild tem-
peratures were applied (TS and MTS) (Lee et al., 2009a).
Moreover, after investigating the effect of the different pH
values in the treatment medium, it was reported that the
lethal effect of the MTS was enhanced at lower pH values
(pH values of 3.0 and 4.0) compared with mild pH values
(pH values of 5.0 and 7.0). In addition, this lethal effect
(>1.0 Log;y CFU/mL) was recorded at mild temperatures
(50, 55, and 60°C) but not at low temperatures (40°C). In
a different study, Lee et al. (2009b) also compared micro-
bial inactivation by TS, MS, and MTS (12.5 mm-diameter
probe, 20 kHz, 6 W/mL, 124 um, continuous mode) for
inactivation of E. coli K12 in phosphate buffer (pH 7.0)
and reported a 5.0 Log;; CFU/mL of microbial reduction
with MTS (61°C, 300 kPa) after 0.5 min. Furthermore, the
upper pressure limit was found at 300 kPa among the three
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investigated pressure levels (300, 400, and 500 kPa), as no
further inactivation was found at pressures higher than
300 kPa. However, it is worth mentioning that the inac-
tivation achieved with MTS treatment was comparable to
that found with TS treatment of the same treatment time,
temperature, and pressure (0.5 min, 61°C, 100 kPa). On the
other hand, the required treatment times to reach the same
microbial inactivation level with MS (40°C, 300 kPa) were
found to be 2 min longer.

After application of MTS (13 mm-diameter probe,
20 kHz, 800 W, 114 um, 3 s-on and 2 s-off pulsed mode)
(50°C, 400 kPa), reductions of 6.3 Log;, CFU/mL of E. coli
and 4.6 Log;o CFU/mL of S. aureus in phosphate buffer
(pH 7.0) were achieved (Chantapakul et al., 2019). Compar-
ing these results with mild a temperature treatment (50°C,
100 kPa), both microorganisms were inactivated by less
than an inactivation of 1.0 Log;; CFU/mL. When applying
only US treatment (30°C, 100 kPa), changes in microbial
concentration of 2.0 and 0.3 Log;o CFU/mL of E. coli and
S. aureus were reached, respectively. After TS treatment
(50°C, 100 kPa), the achieved inactivation levels were 3.5
and 1.3 Log;o CFU/mL of E. coli and S. aureus, respectively.
Finally, the application of MS (30°C, 400 kPa) resulted in
reductions of 3.9 and 1.9 Log;; CFU/mL of E. coli and S.
aureus, respectively. Consequently, it can be stated that
MTS was the most effective treatment for microbial decon-
tamination of the investigated treatments, followed by MS,
TS, US, and mild temperature treatment, when E. coli was
the target microorganism. In the case of the monoderm
bacteria S. aureus, MTS was also the most effective treat-
ment, followed by MS and TS, but heat treatment at mild
temperature was more effective than the US treatment.

3.4.3 | Inactivation in real foods

Regarding applying this technology in real food prod-
ucts, MTS may be seen as an alternative to liquid whole
egg pasteurization. Traditional pasteurization treatments
in liquid whole egg (60°C, 3.5 min) should reduce >5.0
Log;y CFU/mL in the population of the most prevalent S.
enterica subsp. enterica serotypes are S. Enteritidis and S.
Typhimurium (Ceylan et al., 2021; Doyle & Mazzotta, 2000;
Froning et al., 2002; Maiias et al., 2003; Shah et al., 1991).
However, S. Senftenberg 775 W is considered the most
heat-resistant serotype, resulting in no further than 1.0-4.0
Log;y CFU/mL reductions with the conventional pasteur-
ization heat treatment in plain whole egg, and although
this heat-resistant strain is not frequently found, low safety
level for pasteurized liquid whole egg in case of contami-
nation is expected (Davidson et al., 1966; Ng et al., 1969;
Osborne et al., 1954; Anellis et al., 1954; Manas et al.,
2003). For this reason, Manas et al. (2000b) investigated
the inactivation of S. Senftenberg 775 W in liquid whole
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egg with MTS (13 mm-diameter probe, 20 kHz, 450 W,
117 um, continuous mode). MTS at 60°C and 200 kPa,
resulted in the reduction of 3.0 Log;, CFU/mL of S. Sen-
ftenberg 775 W in 3.5 min due to the additive effect of heat
and MS and achieving no more than 2.0 Log;, CFU/mL
microbial reduction when only heat treatment was applied
under the same conditions (60°C, 3.5 min). In addition, an
exponential increase in the microbial inactivation rate was
seen with a linear increase in the applied wave amplitude.
Another example of real food products in which MTS has
been studied as a microbial decontaminant technology is
apple juice. Arroyo et al. (2012) investigated the inactiva-
tion of C. sakazakii in this product after MTS treatment
(13 mm-diameter probe, 20 kHz, 450 W, 117 um, continuous
mode), finding a higher inactivation rate between 45 and
64°C, and the highest synergistic lethal effect at 54°C, lead-
ing to a reduction of 2.7 Log;, CFU/mL of the pathogenic
microorganism.

A comparison of the US-based technologies in real food
products, namely apple juice, was performed by Arroyo
et al. (2012), where the lethal effect of mild temperatures
(54°C), MS (35°C, 200 kPa), and MTS (54°C, 200 kPa)
(13 mm-diameter probe, 20 kHz, 450 W, 117 um, continu-
ous mode) for inactivation of C. sakazakii after 1 min of
processing time and subsequent storage at 4°C for 96 h
were studied. Applying only mild heat treatment resulted
in a change in cell concentration of 0.5 Log;, CFU/mL.
In contrast, the MS reduced 1.1 Log;; CFU/mL, and the
MTS resulted in the inactivation of 2.7 Log;, CFU/mL. Fur-
thermore, during the storage period (96 h, 4°C), microbial
counts for MTS-treated samples were further decreased
to 5.3 Log;o CFU/mL. This indicates the presence of sub-
lethally injured cells. On the contrary, only 1.8 Logg
CFU/mL of microbial reduction was achieved after apply-
ing only mild heat treatment. When the required treatment
time to achieve a reduction of 5.0 Log;y CFU/mL of E. coli
K12 in apple cider by using TS (59°C, 100 kPa), MS (55°C,
400 kPa), and MTS (59°C, 400 kPa) (12.5 mm-diameter
probe, 20 kHz, 6 W/mL, 124 um, continuous mode) was
studied (Lee et al., 2013), treatment time for MTS was sig-
nificantly reduced down to 1.4 min, compared with 3.8 min
and 2.5 min for TS and MS, respectively.

Moreover, intending to compare the lethal effect of MS
and MTS (13 mm-diameter probe, 20 kHz, 450 W, 110 um,
continuous mode) on both Gram-type bacteria in real food
products, Guzel et al. (2014) investigated the effects of MS
(35°C, 200 kPa) and MTS (60°C, 200 kPa) on inactiva-
tion of E. coli O157:H7 and L. monocytogenes in apple and
orange juice. The processing times to achieve a microbial
reduction of 4.0 Log;; CFU/mL obtained with MS showed
higher tolerance for L. monocytogenes (7.2 min) than for E.
coli 0157:H7 (3.6 min). The same tendency was found in US
and TS with higher ultrasonic tolerance in monoderm bac-
teria due to the thick peptidoglycan layer, which is missed

in the diderm bacteria. However, the same inactivation
level without significant differences in treatment times for
both bacteria was achieved by MTS treatment after 1.1-
and 0.9-min treatment times of E. coli O157:H7 and L.
monocytogenes, respectively. Even though lower required
processing times were seen in the monoderm species, this
bacterial group is considered the most tolerant against con-
ventional physical treatments. As a result, MTS treatment
might be proposed as a strategy in which physiological
differences between monoderm and diderm bacteria are
not as crucial to consider in terms of microbial inacti-
vation as in other conventional or novel food processing
technologies.

3.4.4 | General statements on MTS

Based on the reviewed results, the MTS technology is
the most promising US-based strategy of the proposed
approaches in which desired microbial inactivation can
be achieved with a significant reduction of the process-
ing time. Although some research is carried out, this field
is still in its early phase, and certain aspects need to be
studied before a safe use of the technology can be recom-
mended. For example, more studies must be conducted on
MTS’ inactivation of viruses, molds, and yeasts. On the
other hand, MTS has been proven to have the potential
to inactivate spore-forming bacteria, such as Bacillus spp.
spores, as suggested in several studies gathered in the lit-
erature (Condén-Abanto et al., 2016; Raso et al., 1998; Sala
et al., 1995).

Comparing MTS with heat processing, the heat provided
by MTS means a more effective microbial inactivation
method, with which the processing time could be reduced
(Raso et al., 1998). Moreover, the use of shorter process-
ing times makes possible the increase in the amount of
product that can be processed simultaneously and shorter
processing periods (Lee et al., 2013). However, despite
the mentioned advantages, some limitations make this
technique unsuitable for all applications. The major draw-
back is that MTS can only be used to treat liquid food
products due to its inability to generate the cavitation phe-
nomenon in solid systems successfully. In addition, studies
carried out so far have been performed in complex and
rather time-consuming laboratory-scale equipment. These
new instrument designs and optimizations are needed
to improve MTS performance concerning industrial up-
scaling. Hence, MTS is still a novel technology that has
not been widely explored in real food products; for this
reason, more studies that evaluate its microbial decontam-
ination efficacy in these matrix types should be conducted
(Chantapakul et al., 2019).

Nevertheless, the current microbial food decontam-
ination efficacy of the setups of US-based approaches
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investigated so far, including MTS, is only sometimes
enough when reaching certain inactivation levels of
pathogenic microorganisms, which are crucial to con-
trolling the food chain. Therefore, Table 7 compares the
inactivation levels of target pathogenic microorganisms
with these technologies and traditional heat treatments
in different food categories. The main conclusions drawn
from Table 7 are as follows:

a. Generally, the achieved inactivation of the pathogenic
microorganisms with the US-based processing tech-
nologies does not meet target reductions achieved
with conventional heat processing, for example, tar-
get reductions for L. monocytogenes in fish and fishery
products and Salmonella spp. in the plain whole egg are
not met.

b. There is not enough validated data to show that reduc-
tion targets are met to propose the novel technolo-
gies as an alternative to conventional heat processing,
for example, E. coli O157:H7, L. monocytogenes, and
Salmonella spp. in fruit juices (pH 4.0 or less).

c. There is no reported data on the inactivation of the
target pathogenic microorganism in milk and milk
products, that is, Coxiella burnetii, probably due to the
difficulties and the risk associated with handling the
pathogen, which is classified as biosafety level 3 accord-
ing to current legislation on biological materials (Seitz,
2014). Therefore, applying these novel technologies as
decontamination techniques in the dairy sector would
not be possible without these investigations.

For this reason, validation data on the decontamination
efficiency of these technologies are required for the target
pathogenic microorganisms to be inactivated in the respec-
tive food sector. Considering all these things, US-based
technologies, especially MTS, may represent promising
alternatives to traditional thermal pasteurization treat-
ments for liquid foods. However, optimization of current
setups and a better understanding of the processing factors’
lethal effects are still required to overcome limitations and
achieve their implementation as food decontamination
technologies.

4 | MATHEMATICAL MODELING OF
MICROBIAL INACTIVATION KINETICS
BY US-BASED PROCESSING
TECHNOLOGIES

Microbial kinetic modeling is a useful tool for applying a
US model-based optimization and performing predictions
during food preservation. These approaches in the field
of predictive microbiology lead to a quantitative descrip-
tion of microbial inactivation kinetic in food products for
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a specific range of environmental conditions (Van Impe
et al., 2018). In this way, kinetic models can be employed
to predict the inactivation and assess the impact of dif-
ferent processing parameters on different microorganisms
and food products (Valdramidis et al., 2010).

Two approaches can generally describe microbial inac-
tivation behavior (Gomez-Gomez et al., 2020). The first
one assumes that the microbial population in the food
subjected to the treatment has a homogeneous resistance
and follows first-order kinetics. In this case, a first-order
model needs to be used. This model is the most common
and straightforward based on estimating one inactivation
parameter, often associated with the D value (Chanta-
pakul et al., 2019). On the other hand, another approach
considers more complex microbial inactivation kinetics
where nonlinear models must be employed to describe sur-
vival behavior accurately. The nonlinearity in microbial
inactivation is described by different modes, for exam-
ple, downward concavity or shoulder before the log-linear
part of the inactivation period and/or an upward concav-
ity or tail after the log-linear part of the inactivation period
(Gomez-Gomez et al., 2020; Lee et al., 2013). In this case,
models are based on more than one parameter, such as the
D value and & value, and are used to predict inactivation
parameters for microbial populations with heterogeneous
resistance (Chantapakul et al., 2019). In terms of model-
ing microbial inactivation using US-based technologies, a
significant number of studies, mainly including nonlin-
ear models to describe the inactivation, are summarized in
Table 8.

As it can be seen from Table 8, several nonlinear kinet-
ics models such as the Weibull model, modified Gompertz
model, log-logistic model, biphasic linear model, log-linear
and shoulder model, among others, have been used in
monoderm and diderm bacteria or yeasts to predict the
microbial inactivation assisted by the US-based process-
ing technologies. Regarding the US modeling, microbial
kinetics can be described by the first-order model, also
known as the log-linear model, because of the presence
of one single lethal factor (sonication), similar to model-
ing in conventional thermal inactivation processes (Lee
et al., 2009b). However, the US modeling can also be ade-
quately described by nonlinear models, such as the Weibull
model, being considered a flexible nonlinear model with
suitable functions in describing microbial inactivation in
food products (Adekunte et al., 2010a; Pala et al., 2015).
Less frequently, other nonlinear models, like the biphasic
linear model and the log-linear and shoulder model, could
describe the inactivation kinetics by the US (Gémez-Lépez
et al., 2017; Mustapha et al., 2019).

Alternatively, when more than one lethal factor is
applied, such as the combination of sonication with mild
thermal treatment and/or treatments at elevated pres-
sure, nonlinear microbial inactivation kinetics have been
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reported (Lee et al., 2009b, 2013). For example, when TS,
MS, and MTS were investigated, the biphasic linear model
had the best fitting for the inactivation of E. coli K12 in
apple cider (Lee et al., 2013) or E. coli and S. aureus in phos-
phate buffer (pH 7.0) (Chantapakul et al., 2019; Lee et al.,
2009b). The biphasic linear model may be the most suitable
option for fitting models by US-based processing technolo-
gies, being often reported as the best-fitting model in TS,
MS, and MTS treatments. Moreover, Lee et al. (2009b)
reported this model as the most suitable kinetic model to
describe microbial inactivation by sonication-based treat-
ments. The biphasic linear model assumes the fitting of
two independent first-order kinetics involving the differen-
tiation of sensitive and resistant populations (Chantapakul
et al., 2019).

On the other hand, less often, other nonlinear mod-
els adequately described microbial survival in TS, MS,
and MTS treatments, for example, the modified Gompertz
model and the log-logistic model (Lee et al., 2009a). Con-
trary to microbial inactivation by the US alone, the Weibull
model may not be a suitable option to describe inactivation
kinetics by sonication-based treatments when more than
one lethal factor is applied.

Finally, current microbial modeling approaches eval-
uate the inactivation kinetics assuming that processing
parameters are not changing with time, for example, the
temperature is considered constant, which differs from the
real processing conditions at the industrial level (Cattani
et al., 2016). Nevertheless, in US-based technologies the
temperature profile of the treated medium will change over
time if no temperature control system is used, such as a
cooling bath. As a result, there will be a direct impact on
the accurate and precise evaluation of the microbial inac-
tivation parameters (Dolan et al., 2013; Valdramidis et al.,
2008). Therefore, future research should focus on imple-
menting approaches to estimate inactivation parameters
under realistic dynamic environments for the actual values
of the parameters to represent reliable ones, being mea-
sured accurately by changing processing factors, such as
medium temperature, and used as inputs for the microbial
models to perform the microbial regression analysis.

5 | CONCLUSIONS

US technology is one of the emerging food processing
technologies with the potential to deliver safe food by
inactivating pathogenic and spoilage bacteria. However,
mostly, it can be stated that only limited microbial inac-
tivation can be achieved when the US is applied alone.
In contrast, combining US with other hurdle approaches,
such as heat treatments at mild temperatures and/or treat-
ments at elevated pressure, has been proposed to overcome

in Food Sciexce and Food Safety

US technology’s drawbacks and thus improve microbial
inactivation. From the combinations, MTS is reported to
be the most promising for the inactivation of different
microorganisms in food products, such as fruit or veg-
etable juices and liquid egg products. In order to describe
the microbial inactivation kinetics, often nonlinear math-
ematical models are required, most often used in previous
studies. However, despite the great potential of these
technologies, there are still numerous research questions
regarding their safe use, impact on the quality of differ-
ent foods and their sensorial aspects, scalability, economic
viability, and sustainability aspects. Additionally, current
microbial modeling approaches are limited to assessing
microbial resistance under dynamic conditions, assuming
that all these issues need to be investigated before these
technologies can reach the market-ready level.
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