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Arsenic (As), lead (Pb), cadmium (Cd), and mercury (Hg) have been recognized as 
most toxic heavy metals that are continuously released into the environment, both 
from natural sources and from anthropogenic production of fertilizers, industrial 
activities, and waste disposal. Therefore, As, Cd, Hg, and Pb are found in increasing 
concentrations in bodies of water, fodder, feed, and in the tissues of livestock, 
including poultry, in the surroundings of industrial areas, leading to metabolic, 
structural, and functional abnormalities in various organs in all animals. In poultry, 
bioaccumulation of As, Pb, Cd, and Hg occurs in many organs (mainly in the 
kidneys, liver, reproductive organs, and lungs) as a result of continuous exposure 
to heavy metals. Consumption of Cd lowers the efficiency of feed conversion, 
egg production, and growth in poultry. Chronic exposure to As, Pb, Cd, and Hg at 
low doses can change the microscopic structure of tissues (mainly in the brain, 
liver, kidneys, and reproductive organs) as a result of the increased content of 
these heavy metals in these tissues. Histopathological changes occurring in the 
kidneys, liver, and reproductive organs are reflected in their negative impact on 
enzyme activity and serum biochemical parameters. Metal toxicity is determined 
by route of exposure, length of exposure, and absorbed dosage, whether chronic 
and acute. This review presents a discussion of bioaccumulation of As, Cd, 
Pb, and Hg in poultry and the associated histopathological changes and toxic 
concentrations in different tissues.
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Introduction

Heavy metals are members of the class of metalloids and metals with an atomic density 
greater than or equal to 4,000 kg/m3 (1). Animals can absorb environmental elements and 
metals from the air, water, sediment, and food (2, 3). Heavy metals are among the main 
contaminants of our food supply, and heavy metal contamination is a serious issue for our 
ecosystem (4). Heavy metal contamination is pervasive throughout the world, especially in areas 
close to urban regions and industrial zones (5). Zinc (Zn), iron (Fe), copper (Cu), and selenium 
(Se) are essential metals that have specific functions in regulating body metabolism (6, 7). In 
contrast, toxic elements such as lead (Pb), chromium (Cr), mercury (Hg), nickel (Ni), and 
cadmium (Cd) are typically associated with contamination and can have hazardous effects on 
living organisms when specific concentrations are exceeded (8, 9). Nonessential elements have 
no known specific function in the body but are also not assumed to be toxic to any significant 
degree (9). Trace amounts of some heavy metals, such as Cd, Pb, As, Cr, Hg, and Ni, can 
be found in water, poultry, fish, and birds (4, 10). Prolonged exposure to these heavy metals, 
even at low doses, can have severe negative effects on both animal and human health (11), and 
the buildup of heavy metals in the environment and biosphere is considered to be a biohazard 

OPEN ACCESS

EDITED BY

Dandan Han,  
China Agricultural University, China

REVIEWED BY

Ahrar Khan,  
Shandong Vocational Animal Science and 
Veterinary College, China
Riaz Hussain,  
Islamia University of Bahawalpur, Pakistan
Hanem Khater,  
Benha University, Egypt

*CORRESPONDENCE

Abdullah S. M. Aljohani  
 jhny@qu.edu.sa

RECEIVED 08 February 2023
ACCEPTED 22 May 2023
PUBLISHED 29 June 2023

CITATION

Aljohani ASM (2023) Heavy metal toxicity in 
poultry: a comprehensive review.
Front. Vet. Sci. 10:1161354.
doi: 10.3389/fvets.2023.1161354

COPYRIGHT

© 2023 Aljohani. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in this 
journal is cited, in accordance with accepted 
academic practice. No use, distribution or 
reproduction is permitted which does not 
comply with these terms.

TYPE Review
PUBLISHED 29 June 2023
DOI 10.3389/fvets.2023.1161354

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2023.1161354&domain=pdf&date_stamp=2023-06-29
https://www.frontiersin.org/articles/10.3389/fvets.2023.1161354/full
https://www.frontiersin.org/articles/10.3389/fvets.2023.1161354/full
mailto:jhny@qu.edu.sa
https://doi.org/10.3389/fvets.2023.1161354
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://www.frontiersin.org/journals/veterinary-science#editorial-board
https://doi.org/10.3389/fvets.2023.1161354


Aljohani 10.3389/fvets.2023.1161354

Frontiers in Veterinary Science 02 frontiersin.org

(12, 13). Metal pollutants are already present in the atmosphere, but 
may become more prevalent as a result of pollution and industrial 
activity (Figure  1) (14). In particular, expanding patterns of 
anthropogenic activity (including industrialization, mining, the use of 
chemical fertilizers and pesticides, unrestricted sewage discharge, and 
extensive groundwater irrigation) have accelerated the spread of heavy 
metals (15, 16). A wide range of factors contribute to the presence of 
toxic metals in agricultural soils, including air deposition, sewage 
irrigation, agrochemicals, and animal and bird manure (17–19). 
Agricultural soil contains heavy metals that have a prolonged 
residence time (often many decades) and sustained bioavailability 
(Figure 2) (20) due to the toxicity of heavy metals at low levels of 
exposure. Many of these toxic metals can pose serious ecological 
threats to animals (21, 22), even threatening the health of poultry and 
animals through food chain transmission and accumulation (23).

After air deposition, the application of poultry and animal manure 
is the main source of the majority of heavy metals found in agricultural 
soil (24–26). The use of poultry and livestock manure in certain ways 
has contributed to the accumulation of several heavy metals (including 
Cd and Hg) in cultivated fields over the past decade (27–29).

Pb and Cd are the most poisonous of the most common heavy 
metals to accumulate in the food chain. Following absorption, these 
are predominantly dispersed across several tissues, mainly the kidneys 
and liver (30, 31). The accumulation of a high level of heavy metals 
triggers a variety of deadly symptoms, such as reproductive issues and 
hepato–renal dysfunction (32). Pb is a neurotoxin that can impair 
metabolism and exert negative effects on the neurological, 
gastrointestinal, and renal systems, as well as hemopoiesis and renal 
function (33). Pb exposure can block heme synthesis and harm the 
brain and kidney systems (Figure  3) (34). Diet is a source of Cd 
contamination; this arises from a variety of food sources and from the 
environment and is passed to animals through the food chain (35), 
causing hypertension, kidney dysfunction, and damage to the lungs 
and liver as well as pulmonary and hepatocellular tissue (36).

The liver and kidneys are crucial for detoxification and the 
excretion of hazardous substances in both humans and animals (37). 
Organs sustain the most harm when there is an overabundance of 
poisonous substances in feed (38), and this depends on the type of 
feed consumed. In terms of specific metals, As is stored in animal 
tissues and can cause nausea, headache, and severe gut irritation (39, 
40). Like other metals, Cu impairs liver, kidney, and brain functions 
at high doses and can cause hemolytic crisis (41).

Poultry farming is one of the most important food-producing 
industries in the world (42), and poultry is the main source of protein 
for millions of people across the world (43). In 2019, worldwide egg 
production reached 83 Mt., a 63% increase since 2000, and poultry 
meat represented approximately 40% of worldwide meat production, 
highlighting its significance as the most widely produced meat 
globally (44). Numerous toxic metals are found as trace components 
and used as feed additives in poultry feed (45). The hazardous effects 
of heavy metals on poultry include loss of weight, organ failure, and 
death (46, 47). Metal toxicity is determined by route of exposure, 
length of exposure, and absorbed dosage, whether chronic or acute. 
The aim of this review is to present a comprehensive account of the 
mechanisms of heavy metal toxicity, its effects, and the 
histopathological changes that occur in different tissues in poultry 
under exposure to heavy metals.

Sources of heavy metal transmission 
and their impact on poultry

Sources of cadmium transmission

Cd is a significant environmental contaminant that is 
continuously released into the environment from industrial and 
natural sources (48, 49). Along with numerous other pollutants, Cd 
is a contaminant of the atmosphere with two types of sources, 

FIGURE 1

Heavy metal contamination in poultry (produced using BioRender).
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FIGURE 2

Factors affecting poultry production (produced using BioRender).

FIGURE 3

Exposure of poultry to heavy metals (produced using BioRender).
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anthropogenic and natural. The contribution of anthropogenic 
sources is three to 10 times more dangerous than that of natural 
sources (5, 50). The main natural sources include forest fires, 
movement via wind-borne soil, and volcanic eruptions (51, 52). The 
smelting of Cu and Ni, the burning of fossil fuels, the production of 
phosphate fertilizers from rocks containing different levels of Cd, and 
the usage of sewage sludge in soil are all examples of anthropogenic 
sources. Cd is dispersed into soil and water, where it accumulates in 
biogenic species through food chains and presents a threat to poultry 
health. Cd can enter the bodies of poultry animals to a small extent 
via food and drinking water (53).

Effects of cadmium on poultry

Cd is transported to target tissues, where it accumulates, after 
binding to metallothionine in the bloodstream (54). Cd has 
teratogenic consequences in various animals, including chickens, such 
as appendage deformities, ear abnormalities, and gastrointestinal 
problems (55, 56). Additionally, non-hypertrophic emphysema, 
osteoporosis, persistent rhinitis, anemia, and eosinophilia can all 
result from Cd exposure (57, 58). When the amount of Cd in the 
blood exceeds the metallothionine ability to bind it, free Cd triggers 
the production of free radicals and lipid peroxidases, which harm the 
liver and kidneys (59). Ingestion of Cd at a high rate results in a 
reduction in egg production by poultry as a result of histopathological 
damage, reducing feed intake and increasing sensitivity to stress (60, 
61). Furthermore, absorption of Cd in the digestive tract increases 
deficiencies of minerals such as Fe and Ca normally obtained via the 
diet (62). In addition to increasing bioaccumulation in tissues, 
exposure to Cd in poultry also transfers Cd to eggs. Cd exposure may 
lower the protein concentration needed for absorption and transport, 
and thus decreases excretory activity in the oviduct in poultry (56).

Sources of lead transmission

Animals are routinely exposed to Pb, which is one of the greatest 
environmental poisons in industrialized areas of the world (63). Pb is 
a naturally occurring element in the inner layer of the earth’s crust; it 
enters the environment in various ways, including the burning of 
gasoline (the primary source of Pb exposure), plant fuel, drinking 
water, recycled material, dust, cosmetics, and lead-based paints (64, 
65). Pb poisoning, which is particularly prevalent in animals, can 
be  brought on by a variety of environmental variables, including 
industrial pollutants, agricultural practices, use of automobiles, and 
contaminated feed and soil (66, 67). Pb ingested orally is only slightly 
absorbed by the animals; however, after constant exposure at a low 
level, due to the relatively slow rate of Pb removal, a hazardous level 
of Pb can accumulate in tissues (68). When Pb comes into contact 
with air, food, and drink, it has an impact on all biological systems, 
including that of poultry (69).

Effects of lead on poultry

Pb has the capacity to cause oxidative stress and serves as a catalyst 
for oxidative processes of biological molecules by generating free 

radicals (70). Depending on the degree of exposure, the negative 
consequences of Pb can range from minor physiological or 
biochemical abnormalities to significant pathologic illnesses, in which 
various organs and systems may be harmed or their functions altered 
(71). Pb acetate in subclinical amounts reduces the sensitivity of 
chickens to endotoxins. Pb has the potential to deactivate antibodies, 
thus impairing the resistance of poultry to infectious illness (72). Pb 
poisoning also reduces lysosome activity and is involved in phagocytic 
activity of polymorphonuclear leukocytes (73). Finally, Pb obstructs 
the actions of many antioxidant defenses; low antioxidant levels may 
damage various organ systems, including the nervous system, the liver, 
the kidneys, and the reproductive system (74). In severe cases, Pb 
toxicity has also been shown to cause death in poultry (75).

Sources of arsenic transmission

As is a chemical found in the environment that has a significant 
impact on the health of animals, including poultry (76). As can 
be found in trivalent, pentavalent, organic, and inorganic forms and 
can combine with variety of elements, such as S, H, O, Pb, and Cu (31, 
77). Similar to animal exposure more generally, poultry in As-affected 
areas are exposed to dangerous level of the toxic metal (78). As is a 
source of toxicity and is typically present in fluids used to spray 
animals to control ectoparasites (3, 79). Feed ingredients, 
contaminated drinking water, vegetables, grasses, plants, and 
atmospheric emissions are sources of As contamination (80), with the 
first four mentioned being the main sources of As (81).

Effects of arsenic On poultry

The role of arsenic in poultry nutrition is heavily disputed; it is 
highly hazardous even in very low quantities in food (82). In poultry, 
acute As poisoning causes circulatory collapse, stomach pain, 
excessive salivation, hypothermia, watery diarrhea, and death (83, 84). 
Symptoms of long-term exposure to As at low concentrations in 
poultry include chronic indigestion, stomach cramps, and skin 
discoloration (85, 86). Long-term consequences can include gangrene-
like sores, carcinoma of the skin, liver, kidneys, and lungs, and cancer 
(87, 88). The liver is typically thought to be the primary organ involved 
in the metabolism of As (89). As can block the action of intracellular 
enzymes and may impact acetyl-CoA synthesis, glutathione (GSH) 
synthesis, fatty acid oxidation, glucose uptake, and gluconeogenesis 
(90). One of the most frequently recognized explanations for 
As-induced toxicity is oxidative stress: oxidative stress brought on by 
As-induced liver damage results in the production of reactive oxygen 
species (ROS) (91). Despite the fact that As cannot directly cause DNA 
damage, it still has an impact on the enzymes involved in DNA repair 
and the energy pathway of cells. Finally, As causes oxidative damage 
in the skeletal muscles, liver, and kidneys in chickens (92).

Sources of mercury transmission

Hg is one of the most potent neurotoxins, and it has a range of 
negative health effects on both humans and animals (93). Hg is 
considered to be a significant environmental pollutant, along with 
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other non-essential trace metals, because of its high toxicity and 
capacity for biomagnification and bioaccumulation (94). Methyl 
mercury is known to be the most dangerous form, but Hg (II) is more 
frequently and abundantly present in the environment and has the 
potential to exert extremely negative effects on poultry (95). Hg can 
exist in environment in the form of metal divalent, monovalent, 
dimethyl mercury, and methyl mercury. Inorganic mercury salts and 
organic mercury compounds make up the majority of the mercury 
found in water, soil, sediments, plants, and animals (96, 97). The main 
sources of Hg include the paper industry, chemical industry, paint 
industry, insecticides, and fungicides, as well as geothermal steam 
used to generate electricity (98). Hg was originally utilized in 
medicine, but this therapeutic use was halted due to its severe toxic 
effects in both people and animals (99).

Effects of mercury on poultry

Hg is recognized as a toxic chemical that can cause devastating 
effects in poultry, such as kidney and liver damage, even at a very low 
level of exposure (100). Toxic concentrations of Hg are dangerous for 
poultry, with symptoms including development of anemia and 
depressed growth rate. Young growing chickens are typically more 
susceptible to the toxic effects of chronic Hg exposure than adults 
(101, 102). The production of oxidative stress, suppression of nitric 
oxide, and the disruption of cytokine profiles are the main mechanisms 
of Hg-induced toxicity in immune cells (103). To assess the effects of 
Hg exposure on the immune system in poultry, activated immunity 
should be considered, as this is more important in vulnerability to 
diseases. Hg exposure can damage tissues and organs, and it is 
absorbed and distributed in the liver and kidneys in poultry (104, 105).

Worldwide reports on heavy metal toxicity 
in poultry

Metal toxicity has been observed in many living organisms, but 
our main focus here is on poultry. It has been found that metal toxicity 
is highly prevalent in poultry worldwide, as outlined in Table  1. 
Various heavy metals have been examined in different studies, among 
which one study has measured the concentrations of Pb, Cd, Ni, Hg, 
Fe, Zn, Mg, and Cu in the kidneys, spleen, and liver of poultry from 
Manisa, Turkiye. Concentrations of heavy metals can be determined 
using atomic absorption spectrophotometry (106, 128). The highest 
concentration of Cu was observed in the liver, at 3.7 mg/kg, and the 
lowest level in the spleen, at 1.99 mg/kg (129). For Pb, the highest 
concentration was observed in the kidney, at 0.103 mg/kg, and the 
lowest level in the liver of chickens, at 0.065 mg/kg. The concentrations 
of Pb and Hg in the liver in chicken were found to be 0.102 and 
0.053 mg/kg, respectively (106).

In another study, Cd, Zn, and Pb concentrations in poultry were 
measured in a mining area of China. In chickens, a low Pb 
concentration of 0.52 mg/kg was observed in the muscles (130) and a 
high Pb concentration of 0.63–0.73 mg/kg in the liver. Pb has been 
responsible for acute poisoning in poultry and has adverse effects on 
poultry health (131). Descending levels of concentration of Cd in 
chicken were observed in the liver, kidney, and muscles. In a separate 
study, a low Cd concentration of 4.64 mg/kg was observed in the 

kidneys and a high Cd concentration of 9.36 mg/kg was observed in 
the liver in poultry (112). A kidney: liver Cd ratio greater than 1 is an 
indicator of acute poisoning, whereas a ratio less than 1 indicates a 
lower level of poisoning (132). The highest concentrations of Zn and 
Cd were observed in kidneys and liver in poultry, which are known to 
be specific target organs for bioaccumulation of toxic metals (112).

The concentrations of several heavy metals (Zn, Cd, and Pb) were 
assessed in the liver, kidney, heart, and meat of chickens acquired from 
Kohat market, Pakistan, using a PerkinElmer PinAAcle™ 900 T 
atomic absorption spectrophotometer (110, 133). Concentrations of 
Cd in the range of 0.075 ± 0.010 to 15.763 ± 0.012 mg/kg were observed 
in the kidneys and liver of chickens, while concentrations of Pb in the 
range of 1.85 ± 0.007 to 11.838 ± 0.005 mg/kg were observed in kidneys 
and liver (110). It was discovered that chicken meat contained the 
lowest levels of concentration of these metals, while the kidneys and 
liver contained the most significant quantities.

In another study, heavy metals Pb, As, and Cd were measured in 
the liver, kidneys, and breast meat of chicken in Nigeria. An As 
concentration of 0.0802 ± 0.021 mg/g was observed in the breast meat 
and 0.0037 ± 0.018 mg/g in the liver. Cd concentrations of 
0.019 ± 0.001 mg/g and 0.003 ± 0.001 mg/g were observed in the 
kidneys and liver, respectively (109). These results indicated that the 
concentration of As was higher in the breast meat and lower in the 
liver. The concentration of Cd was higher in the kidneys and lower in 
the breast meat of chickens, and Pb was not detected in samples of 
chicken (109).

The concentrations of heavy metals such as Cd and Pb were assessed 
in the liver, kidneys, and meat of chickens from an industrial area of India. 
The highest levels of Cd and Pb in tissues and muscles have been 
determined in the kidneys. Cd concentrations of 2.02 μg/g and 1.86 μg/g 
were observed in the kidneys and liver, respectively, in poultry (116). The 
findings showed that chickens in areas with toxic metal exposure may 
exhibit pathological lesions in various tissues as a result of heavy metal 
accumulation (116). As a result, eating chicken meat from the 
commercially exposed area may present a potential health risk.

An additional study was conducted to determine concentrations 
of the heavy metals Pb, Ni, and Cd in the brain and liver of poultry in 
Dhaka, Bangladesh, using atomic absorption spectrometry. Zn 
concentrations of 68.267 mg/kg and 53.778 mg/kg were observed in 
the liver and brain, respectively, in broiler chickens; concentrations of 
348.52 mg/kg and 619.648 mg/kg were observed in liver and brain, 
respectively, in domestic chickens. Pb concentrations of 2.397 mg/kg 
in the liver and 4.141 mg/kg in the brain were observed in broiler 
chickens; 5.190 mg/kg in the liver and 9.008 mg/kg in the brain were 
observed in domestic chickens. Finally, Cd concentrations of 2.48 mg/
kg in the liver and 2.493 mg/kg in the brain were observed in broiler 
chickens; 2.498 mg/kg in the liver and 0.999 mg/kg in the brain were 
observed in domestic chickens (121). These concentrations of heavy 
metals observed in poultry exceeded the recommended values of the 
WHO/FAO. A high Zn concentration of 619.648 mg/kg was observed 
in the brain and a low Zn concentration of 32.430 mg/kg in the liver 
in poultry (134).

In another study, chicken liver samples were obtained from 
markets in Erbil, Iraq, and inductively coupled plasma optical 
emission spectrometry was used to determine the presence of heavy 
metals such as Pb, Hg, Cd, and Ni (120). A low Ni concentration of 
0.15 mg/kg was observed, in contrast to the findings of an earlier. In 
a separate study in Diyala, Iraq, in which a high concentration of 
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TABLE 1 Metal toxicity observed in different organs in poultry.

Metal Organ Normal range Toxic concentration Country References

Cadmium Liver 0.039 mg/kg 0.050 mg/kg Türkiye (106)

Cadmium Kidney 0.011 mg/kg 0.075 mg/kg Türkiye (106)

Cadmium Spleen 0.011 mg/kg 0.084 mg/kg Türkiye (106)

Cadmium Liver 0.16 mg/kg 0.627 mg/kg Malaysia (107)

Cadmium Meat 19.67 μg/g 26.7 μg/g Malaysia (107)

Cadmium Liver 0.15 μg/g 0.221 μg/g Malaysia (107)

Cadmium Liver 0.04 mg/kg 0.095 mg/kg Iraq (108)

Cadmium Kidney 0.018 mg/g 0.019 mg/g Nigeria (109)

Cadmium Liver 0.03 mg/g 0.04 mg/g Nigeria (109)

Cadmium Breastmeat 0.005 mg/g 0.5 mg/g Nigeria (109)

Cadmium Liver 0.138 mg/kg 1.213 mg/kg Pakistan (110)

Cadmium Meat 0.075 mg/kg 1.15 mg/kg Pakistan (110)

Cadmium Egg 0.388 ppm 19 ppm Saudi Arabia (111)

Cadmium Liver 0.137 ppm 19 ppm Saudi Arabia (111)

Cadmium Kidney 1.03 mg/kg 7.73 mg/kg China (112)

Cadmium Liver 4.69 mg/kg 20.4 mg/kg China (112)

Cadmium Muscle 0.02 mg/kg 0.08 mg/kg China (112)

Cadmium Liver 0.095 mg/kg 0.159 mg/kg Iraq (113)

Cadmium Liver 0.37 mg/kg 0.627 mg/k Iran (114)

Cadmium Liver 0.29 mg/kg 0.3 mg/kg Nigeria (115)

Cadmium Meat 0.040 μg/g 0.94 μg/g India (116)

Cadmium Liver 0.01 mg/kg 0.29 mg/kg Saudi Arabia (117)

Cadmium Kidney 0.0053 ppm 0.1324 ppm Iraq (118)

Cadmium Meat 0.05 ppm 0.0953 ppm Iraq (118)

Cadmium Meat 0.097 ppm 12–40 ppm Saudi Arabia (119)

Cadmium Liver 0.07 mg/kg 0.3 mg/kg Iraq (120)

Cadmium Brain 0.99 mg/kg 2.493 mg/kg Bangladesh (121)

Cadmium Liver 0.998 mg/kg 2.489 mg/kg Bangladesh (121)

Cadmium Kidney 0.15 mg/kg 62.93 mg/kg Tunisia (122)

Cadmium Liver 0.14 mg/kg 7.80 mg/kg Tunisia (122)

Cadmium Muscle 0.009 mg/kg 0.15 mg/kg Tunisia (122)

Cadmium Egg 2.99 μg/kg 65.28 μg/kg Thailand (123)

Cadmium Blood 1.50 μg/kg 6.18 μg/kg Thailand (123)

Lead Liver 0.065 mg/kg 0.065 mg/kg Türkiye (106)

Lead Kidney 0.064 mg/kg 0.092 mg/kg Türkiye (106)

Lead Spleen 0.103 mg/kg 0.082 mg/kg Türkiye (106)

Lead Liver 0.35 mg/kg 0.171 mg/kg Malaysia (107)

Lead Liver 0.35 μg/g 0.375 μg/g Malaysia (107)

Lead Liver 1.29 mg/kg 3.4 mg/kg Iraq (124)

Lead Liver 2.7 mg/kg 2.9 mg/kg Pakistan (110)

Lead Meat 2.15 mg/kg 2.275 mg/kg Pakistan (110)

Lead Kidney 0.22–1.22 mg/kg 0.52–2.61 mg/kg China (112)

Lead Liver 0.30 mg/kg 0.85 mg/kg China (112)

Lead Muscle 0.04 mg/kg 0.30 mg/kg China (112)

(Continued)
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0.414 mg/kg of Ni was found in poultry (117). A lower Zn 
concentration of 20.72 mg/kg in chicken liver samples has been 
reported in Saudi  Arabia (135), and a higher concentration of 
100.87 mg/kg was observed in Turkiye. In previous studies, Cd 
concentrations of 0.159 mg/kg, 0.29 mg/kg, and 0.37 mg/kg had been 
observed in the liver in chickens in Iraq (107), Nigeria (115), and Iran 
(114), respectively. A Pb concentration of 0.28 mg/kg was observed 
in chicken liver samples, which is more than twice the limit of 0.1 mg/
kg permitted by the Codex Alimentarius Commission. According to 
various studies, a low Pb concentration of 0.14 mg/kg has been 
observed in Saudi Arabia (117) and a higher Pb concentration of 
0.171 mg/kg has been observed in Nigeria (115). In 40% of the 
samples, an Hg concentration of 0.11 0.08 mg/kg was found, which is 
above the FAO/WHO acceptable limit; this figure is three times 
greater than reported in previous Nigerian research (115).

Histopathological changes in the kidneys 
in poultry

The kidneys, which are responsible for excreting poisonous 
substances, are the organs second-most severely impacted by Cd 
poisoning (136). When poultry are given Cd at a concentration of 
50 mg/l in the drinking water, their kidneys have been found to 
develop congestion, with or without pinpoint hemorrhage (56). With 
administration of Cd to poultry at the same level in the drinking 
water, microscopic examinations of kidney tissues have revealed 
congested renal parenchyma, degeneration and desquamation of the 
tubule lining epithelium, hyaline masses, interstitial nephrosis, 
mononuclear cell infiltration, necrosis in the renal tubules, 
hypercellularity of glomeruli, and intracytoplasmic hyaline cast in the 
lumen (137). Cd-induced toxicity in the kidneys also causes changes 

TABLE 1 (Continued)

Metal Organ Normal range Toxic concentration Country References

Lead Liver 0.095 mg/kg 0.1 mg/kg Iraq (113)

Lead Liver 3.79 mg/kg 4.6 mg/kg Iran (114)

Lead Liver 2.56 ppm 107.1 ppm Saudi Arabia (125)

Lead Meat 9.21 ppm 107.1 ppm Saudi Arabia (126)

Lead Liver 0.17 mg/kg 0.28 mg/kg Nigeria (115)

Lead Meat 0.030 μg/g 1.91 μg/g India (116)

Lead Liver 0.04 μg/g 2.04 μg/g India (116)

Lead Kidney 0.05 μg/g 2.48 μg/g India (116)

Lead Liver 0.14 mg/kg 0.171 mg/k Saudi Arabia (117)

Lead Meat 0.001 ppm 0.0953 ppm Iraq (118)

Lead Meat 2.09 ppm 10 ppm Saudi Arabia (119)

Lead Liver 0.28 mg/kg 0.10 mg/kg Iraq (120)

Lead Brain 1.306 mg/kg 8.548 mg/kg Bangladesh (121)

Lead Liver 1.849 mg/kg 9.008 mg/kg Bangladesh (121)

Lead Kidney 0.17 mg/kg 36.73 mg/kg Tunisia (122)

Lead Egg 29.85 μg/kg 102.86 μg/kg Thailand (123)

Lead Blood 7.57 μg/kg 77.53 μg/kg Thailand (123)

Mercury Liver 0.039 mg/kg 0.084 mg/kg Türkiye (106)

Mercury Kidney 0.037 mg/kg 0.075 mg/kg Türkiye (106)

Mercury Spleen 0.009 mg/kg 0.014 mg/kg Türkiye (106)

Mercury Liver 0.11 mg/kg 0.152 mg/kg Iraq (120)

Mercury Egg 6.60 μg/kg 33.10 μg/kg Thailand (123)

Mercury Blood 0.29 μg/kg 3.07 μg/kg Thailand (123)

Arsenic Liver 0.1 μg/g 0.5 μg/g Malaysia (107)

Arsenic Kidney 0.012 mg/g 0.036 mg/g Nigeria (109)

Arsenic Liver 0.003 mg/g 0.004 mg/g Nigeria (109)

Arsenic Breast Meat 0.080 mg/g 0.077 mg/g Nigeria (109)

Arsenic Egg 0.00071 ppm 1.8 ppm Saudi Arabia (127)

Arsenic Liver 0.0003 ppm 1.8 ppm Saudi Arabia (127)

Arsenic Meat 2.76 ppm 100 ppm Saudi Arabia (119)
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in cell adhesion, autophagic responses, and cellular signaling 
cascades (54).

Additionally, histopathological changes in the kidney indicate 
necrotic lesions and eosinophilic intranuclear inclusion in epithelium 
cells of the renal tubules (138). Histopathological changes attributable 
to Hg accumulation in the kidneys have been found to include 
enlarged renal tubules, tubular hyalinization, fibrosis, fold increase in 
nucleosome content, increased levels of malondialdehyde (MDA), and 
decreased levels of intracellular glutathione (GSH) in the 
kidneys (139).

Finally, histopathological changes in the kidneys attributable to 
exposure to As include tubular fibrosis, enlargement of the renal 
tubules (140), severe hyalinization, increased renal MDA level, 
decreased renal SOD activity, decreased renal GSH-Px activity, and 
decreased CAT and GR activity (141).

Histopathological changes in the liver in 
poultry

Cd is initially supplied to the liver through portal blood 
circulation, which is primarily associated with albumin, after which it 
is taken up by hepatocytes from the sinusoidal capillaries of the liver 
(63, 142). A higher Cd dosage results in increased hepatic cell size, 
hepatic cell destruction and necrosis, and significant infiltration of 
macrophages in the liver (143). Lower doses do not cause any notable 
alterations in poultry (144). Daily administration of Cd at 50 mg/l 
induces degenerative changes in the lymphocytes, macrophages, 
plasma cells, and hepatocytes, as well as producing swollen, fragile 
increases in the sinusoidal spaces and focal necrotic spots in livers. Cd 
causes primary hepatocellular injury, and thus ischemia is induced 
due to endothelial cell damage (145). Acute Cd exposure results in 
secondary liver injury due to the stimulation of Kupffer cells, eliciting 
a series of inflammatory events involving various types of liver cells 
and several inflammatory and cytotoxic mediators (146).

Absorbed Pb is accumulated in the liver, and Pb exposure may 
lead to histological abnormalities in the liver in poultry (147). After 
exposure to large doses of Pb, the livers of these animals have been 
found to exhibit abnormalities such as irregularity and dilatation of 
blood sinusoids, hepatic lipid vacuolization, vacuolization of other 
cells, hyalinization of the hepatocellular cytoplasm, hepatocyte 
necrosis, and severe sinusoid congestion (148). Additionally, Pb 
accumulation in the liver causes pinpoint hemorrhages and small 
necrotic foci (149).

In terms of histopathological changes in the liver after exposure 
to Hg in poultry, the sinusoids and central veins are dilated, hepatic 
cells show hypertrophy, and karyolytic and pycnotic cells are not 
prominent (150, 151). Finally, histopathological changes in the liver 
attributable to As accumulation include decreased GSH levels, 
increased hepatic MDA levels, decreased hepatic SOD activity, and 
decreased activity of CAT, GR, and GSH-Px (152).

Histopathological changes in brain tissues 
in poultry

Histopathological changes in the brain after As poisoning in 
poultry include vacuolization and severe bleeding, which ultimately 

causes neuronal cell damage (153), lesions in the brain, mitochondrial 
swelling, and infiltration into glial cells (154).

Histopathological changes in the 
reproductive system in poultry

The blood–testis barrier, certain seminiferous tubules, and the 
basement membrane have been found to undergo damage in poultry 
(155). As a result of Pb deposition, spermatogenic cells have been 
found to be  organized erratically and to produce more 
spermatogonium, and the spermatogenic tubes are distorted (156).

Conclusion

It can be concluded that worldwide heavy metal toxicity in poultry 
ranges from 2.1 to 3.4%. Chronic exposure to the heavy metals 
discussed here (i.e., As, Cd, Pb, and Hg) leads to their accumulation 
in various organs of the body; however, Cd accumulates at the highest 
concentrations, followed by As, Pb, and Hg in decreasing order. 
Various organs in poultry are affected by these heavy metals, with the 
sequence of impact beginning with the liver and continuing down to 
the kidneys, brain, and reproductive system. Overproduction of these 
heavy metals leads to oxidative stress in poultry. As a result of the 
accumulation of heavy metals, both gross and histopathological 
changes occur, leading to poor growth and production of multiple 
organs in poultry.
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