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Abstract: The implementation of government regulations on antibiotic use, along with the public’s
concern for drug resistance, has strengthened interest in developing alternatives not only aimed at
preserving animal production but also at reducing the effects of pathogenic infections. Probiotics, in
particular, are considered microorganisms that induce health benefits in the host after consumption of
adequate amounts; they have been established as a potential strategy for improving growth, especially
by stimulating intestinal homeostasis. Probiotics are commonly associated with lactic acid bacteria,
and Limosilactobacillus fermentum is a well-studied species recognized for its favorable characteristics,
including adhesion to epithelial cells, production of antimicrobial compounds, and activation of
receptors that prompt the transcription of immune-associated genes. Recently, this species has
been used in animal production. Different studies have shown that the application of L. fermentum
strains not only improves the intestinal ecosystem but also reduces the effects caused by potentially
pathogenic microorganisms. These studies have also revealed key insights into the mechanisms
behind the actions exerted by this probiotic. In this manuscript, we aim to provide a concise overview
of the effects of L. fermentum administration on broiler chicken health and performance.

Keywords: Limosilactobacillus fermentum; broiler chicken; gut health; microbial diversity; immune
response modulation

1. Introduction

In animal farming, antibiotics have been utilized not only for prophylaxis purposes
but also for growth promotion, notwithstanding the forthcoming health threat associated
with resistance [1–3]. The use of antibiotics as growth promoters has been forbidden
in the U.S. and European Union [4,5], although this practice is still common in other
regions, principally in rural areas that lack efficient administrative systems and legislative
measures to curb drug misuse [6,7]. As a result, considerable attention has been drawn to
the investigation of alternatives (e.g., probiotics) to replace the use of antibiotics for feed
enrichment in animal production [8–10].

Probiotics have been defined by the Food and Agriculture Organization (FAO) and
World Health Organization (WHO) as “live microorganisms that, when consumed in ad-
equate amounts, confer a health effect on the host” [11]. However, an expert panel later
reworked the definition to be utilized as follows: “products that deliver live microorgan-
isms with a suitable viable count of well-defined strains with a reasonable expectation
of delivering benefits for the wellbeing of the host” [12]. The most common probiotic
microorganisms are bifidobacteria and lactic acid bacteria, although others are commonly
recognized, including Enterococcus, Lactococcus, Streptococcus, Propionibacterium, and the
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yeast Saccharomyces [13]. Lactobacilli are acknowledged as the main contributors to in-
testinal homeostasis in humans and other animals [14–17], and the genus Lactobacillus is
certainly the most studied of the lactic acid bacteria group, with more than 200 species
described [18].

The beneficial effects exerted by probiotics are associated with various characteristics.
First, these microorganisms are capable of adhering to and activating epithelial cells via
surface proteins and other membrane-associated molecules (e.g., lipoteichoic acid (LTA)
and exopolysaccharides (EPS)) [19,20]. This interaction not only enhances intestinal barrier
function but also improves the balance of intestinal microbiota, thus preventing dysbiosis
and epithelial dysfunction [21,22]. Additionally, interaction with the gastrointestinal tract
allows for the competitive exclusion of pathogens [23,24]. Second, the secretion of com-
pounds with bacteriostatic activity, such as organic acids and antimicrobial peptides, helps
inhibit the growth of potentially harmful bacteria [25,26]. Finally, probiotics modulate
the immune response of the host by interacting with key receptors that prompt the tran-
scription of cytokines, which ultimately influence the production of immunoglobulins [27].
Despite the efficacy of probiotic administration, the extent of these general actions appears
to be not only species- or strain-specific but also dose-dependent [28–31]. Thus, improving
our knowledge of the benefits and the underlying mechanisms behind them is crucial for
properly characterizing strains aimed at being used in animal production. As the broiler
industry detaches from the utilization of antibiotics, novel strategies for prophylaxis and
performance enhancement have been developed. For instance, probiotics and prebiotics,
as well as plants and algae-derived products, have proven convenient for ameliorating
intestinal and immune parameters, which ultimately were observed to enhance animal
performance [32–36].

L. fermentum, in particular, is a well-characterized and highly recognized probiotic
that is capable of adhering to epithelial cells, synthesizing antimicrobial compounds, and
activating receptors that trigger the expression of immune-associated genes. Hence, it
has been recently studied in land and marine animals. In pigs, for instance, the appli-
cation of the probiotic, alone or in combination with other bacteria, enhances growth
performance, digestibility, gut environment, and health status. L. fermentum treatment
positively modulated the intestinal microbiota while alleviating inflammation in weaned
pigs. Moreover, administration of a diet fermented with a probiotic mixture, including
L. fermentum K9-2, reduced the load of intestinal pathogens such as Escherichia coli and
Clostridium perfringens [37–39]. The application of this species has also yielded positive
results in marine farming. Exposure to L. fermentum R3 Biocenol™ (CCM 8675) improved
the mucosal health of Atlantic salmon [40], while supplementation of L. fermentum URLP18
and L. fermentum PTCC 1638 did not only improve growth conditions by modulating the
immune as well as the antioxidant response but also relieved the pathogenic effects of
Aeromonas hydrophila [41,42]. Another strain, L. fermentum 1744 (ATCC 14931), proved
convenient for preventing the potential accumulation of heavy metals in rainbow trout [43].
This has also been observed in shrimp fed a diet enriched with L. fermentum GR-3, in
which arsenic levels were diminished by the probiotic [44]. In general, the aforementioned
benefits have also been observed after the inclusion of L. fermentum strains into shrimp
diets; namely, lactic acid bacteria did not only ameliorate growth performance and health
status but also provided protection against Vibrio parahaemolyticus [45–47].

Many studies have also reported the effects of probiotic administration on different
physiological parameters in birds [48,49]. In poultry husbandry, various strains of L. fermen-
tum have proved useful for enhancing growth conditions, which have been associated with
gut health, nutrition, and modulation of the immune response. The potential of L. fermen-
tum to counteract the effects of harmful bacteria has also been reported. In this review, we
aimed at summarizing the evidence of the benefits of L. fermentum use in broiler chickens.
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2. Properties of Limosilactobacillus fermentum

Limosilactobacillus fermentum was formerly known as Lactobacillus fermentum, and
the taxonomy of Lactobacillaceae was revisited based on different approaches, including
genomics and proteomics [50–52]. The genus classification refers to the synthesis of ex-
opolysaccharides (limosus—slimy) [50]. The rod-shaped L. fermentum is recognized as a
gram-positive, non-sporulating, catalase-negative, gas-producing facultatively anaerobic
bacterium that is heterofermentative and capable of utilizing several carbohydrates, in-
cluding arabinose, cellobiose, galactose, and maltose, among others [50,52–54]. Strains of
L. fermentum are acknowledged as nomadic or free-living and occur spontaneously in differ-
ent environments. They have been isolated not only from fermenting plant materials and
fermented cereals but also from dairy products, sewage, manure, and the gastrointestinal
tract and feces of birds, pigs, and humans [50,55–58]. Indeed, L. fermentum, as well as other
lactobacilli, remain physiologically active in the gastrointestinal tract, with the potential
to influence host physiology [55]. L. fermentum strains are known for exerting beneficial
effects on human health [59–63]. This species is recognized as safe and is included in the
official lists of European, American, and Chinese food safety authorities [64–66]. It has also
been used for developing commercially available dietary supplements [61,67]. Selected
strains have demonstrated particular probiotic characteristics that render them beneficial
for the host (Table 1).

Once inside the host, probiotic bacteria are exposed to different types of stress, includ-
ing low pH and elevated concentrations of bile salts. L. fermentum strains have evidenced
high viability when encountering such conditions [57,68,69]; additionally, L. fermentum not
only exhibits strong surface hydrophobicity but also high autoaggregation capacity; these
characteristics have been associated with a facilitated interaction between bacterial and
intestinal epithelial cells [53,70]. In general, lactobacilli are capable of adhering to intestinal
mucosa [53,71,72]; this process is mainly mediated by adhesion proteins (e.g., binding
proteins, sortases), but other molecules are also involved (e.g., LTA, LPS, PG) [53,73]. Partic-
ularly in L. fermentum, mucin- and fibronectin-binding proteins (Mub and Fbp, respectively),
along with sortases, have been determined, with upregulation of mub, fbp, and sor observed
in the presence of mucin, bile, and pancreatin [71,72]. Lipoteichoic acids have also been
held responsible for the adhesion capabilities of some strains, along with other factors,
including electrostatic interactions or passive forces [74,75]. Adherence of these molecules
has proved beneficial for maintaining the integrity of the gut barrier; for instance, the LPS
of L. fermentum CECT5716 increased the production of mucins in model intestinal cells [76].
This interaction permits the competitive exclusion of potential pathogens such as Heli-
cobacter pylori, Campylobacter jejuni, and Staphylococcus aureus [77–79]. Pathogen clearance
is enhanced by the capacity of L. fermentum strains to produce a variety of antimicrobial
compounds, commonly known as bacteriocins. These ribosomally synthesized peptides are
capable of disturbing the membrane or inducing cell wall degradation, although the mode
of action of certain peptides remains unknown [79–81]. Various strains have been linked to
these antimicrobial compounds (e.g., fermencin SD11, LF-BZ532, LBM97-1, LBM97-4, and
LBM97-5), which have shown activity against gram-positive and gram-negative bacteria
such as pathogenic E. coli, Salmonella spp., S. aureus, or Listeria spp. [82–85]. Also, other
secondary metabolites (e.g., lactic and organic acids, hydrogen peroxide) contribute to the
overall antibacterial activity of L. fermentum [78,86,87]. Bacterial infections can influence
the concentration of reactive oxygen species/reactive nitrogen species (ROS/RNS) with the
potential to induce pathological effects [88,89]. Some L. fermentum strains possess the entire
glutathione-associated complex, which has made them attractive as potential modulators
of oxidative stress [90–92]. This active redox tripeptide can reduce oxidative agents directly
or indirectly as a cofactor of a group of enzymes involved in eliminating electrophilic com-
pounds [93,94]. Moreover, the presence of L. fermentum is known to activate receptors that
ultimately favor the transcription of antioxidant genes, which lessens oxidative stress [95].
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Table 1. Probiotic properties of L. fermentum strains.

Strain Origin Functional Properties References

L. fermentum YLF016 Yak gut
High survival rate in the gut; strong adherence
to intestinal cells; antibacterial and antioxidant

effects; non-hemolytic activity
[53]

L. fermentum PC-10 Poultry
gut Inhibition of S. Gallinarum growth [56]

L. fermentum PG1 Poultry
digesta

Adhesion to the epithelial cells; survival at low
pH; tolerance to bile salts; antibacterial activity [57]

L. fermentum Y57 Artisanal
yogurt Reduction of hypercholesterolemia in rats [62]

L. fermentum GR-3 Fermented
food

Ameliorates human hyperuricemia via
degrading and promoting excretion of uric acid [63]

L. fermentum MBD93 – Adhesion to gastrointestinal mucin; exclusion of
enteropathogenic bacteria [71]

L. fermentum 10 Human
feces

Strong adhesion to * HT29 epithelial cells; high
tolerance to bile salt; autoaggregation activity;
reduction of E. coli adhesion; antibacterial and

antioxidant activity

[75]

L. fermentum J23 Cheese
Antimicrobial activity of bacteriocin-containing
fractions; growth inhibition of E. coli, S. aureus, L.

innocua, and S. Typhimurium
[82]

L. fermentum SD11 Human
oral cavity

Production of fermencin SD11; antibacterial
activity against oral pathogens [83]

L. fermentum BZ532 Cereal
beverage

Production of bacteriocin LF-BZ532 with a broad
antimicrobial spectrum, including anti-listerial

and anti-pseudomonas activity
[84]

L. fermentum LBM97 Fermented
vegetable

Production of bacteriocins LBM97-4 and
LBM97-5 with antibacterial activity against S.

aureus and E. coli
[85]

L. fermentum ME-3 Human
feces

Complete glutathione system; protection against
oxidative stress [90]

L. fermentum JX306 Fermented
vegetable

High scavenging activity of free and hydrogen
radicals; improving glutathione peroxidase

activity; effective inhibition of oxidative damage
in liver and kidney

[92]

L. fermentum UCO-979C Human
gut Inhibition of H. pylori growth and urease activity [77,96]

L. fermentum DLBSA204 Human
breast milk

Macrophages activation; induction of nitric
oxide synthesis; virus inactivation;

downregulation of pro-inflammatory cytokines
[97]

L. fermentum IM12 Human gut Inhibition of NF-κB-STAT3 signaling pathway [98]

L. fermentum AGR1487 Human
oral cavity

Capacity to activate TLR signaling pathway,
immunomodulatory effects [99]

L. fermentum CECT5716 Human
breast milk

High production of mucins; intestinal
anti-inflammatory effects; immunomodulatory

effects; alleviation of colitis-associated dysbiosis;
glutathione-associated complex;

mastitis prevention

[60,67,76,91,100,101]

* HT29: human intestinal epithelial cell line.

L. fermentum interacts with intestinal epithelial cells (IECs), macrophages, dendritic
cells, and immune cells; this induces the expression of different cytokines that modulate
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T cell polarization [65]. Such interactions are, on the one hand, associated with LTA,
LPS, or PG of bacteria and, on the other hand, with Toll-like receptors (TLR2 and TLR4)
and nucleotide-binding oligomerization domain-containing proteins (NOD2) of the host.
This triggers the recruitment of adaptor proteins (MyD88, NF-κB) that transduce the
signal to the nucleus and modulate the expression of response genes (e.g., cytokines) [102].
In intestinal cells, L. fermentum UCO-979C decreased expression of TNF-α, IL-1β, IL-6,
and MCP-1 in H. pylori-challenged cells, although a slight increase was observed when
compared to control conditions [96]. Exposure to L. fermentum CECT5716 also modulated
the expression of TNF-α, IL-1β, and IL-6 in CMT-93 cells, which are used as a model
cell line of the intestine [76]. Furthermore, L. fermentum DLBSA204 did not only activate
macrophages and induce the synthesis of nitric oxide linked to bacterial clearance, virus
inactivation, and tumor cytotoxicity but also reduced the expression of IL-6 and IL-1β [97].
Other strains (UCO-979C, IM12) have also demonstrated the ability to alter the expression
of cytokines and other signaling molecules in macrophages [96,98]. In dendritic cells,
L. fermentum AGR1487 modulated transcription of IL-6, TNFα, IL-10, and IL-12, whereas
L. fermentum CECT5716 could induce the expression of MHC class II and other costimulatory
molecules (e.g., CD40, CD80) [99,100]. The latter strain, when incubated with peripheral
blood mononuclear cells (PBMCs), induced the activation of NK and Treg cells along
with the production of cytokines including IL-1β, IL-18, TNF-α, and IFN-γ. PBMCs are
constituted of lymphocytes and monocytes and are utilized for screening molecules with
immunomodulatory properties [101]. The use of these cells has also demonstrated that
exposure to L. fermentum B633 suppressed the production of IL-13 while prompting the
synthesis of IL-12 and IFN-γ [103].

3. Applications of L. fermentum in Broiler Chickens

Broiler chickens have been bred exclusively for meat consumption, and the efficiency
of the industry has been linked to innovations in management practices, breeding, nu-
trition, and disease control. However, complications from intestinal infectious diseases
have negatively influenced production parameters, so antibiotics along with vaccines have
extensively contributed to the efficiency of large-scale commercialization [104,105]. As
the industry is detaching from the use of antibiotics for prophylaxis and performance,
novel schemes have emerged for pathogen control and body weight enhancement, includ-
ing probiotics, prebiotics, plants and algae, organic acids, bacteriophages, and essential
oils [32–36,106]. Probiotics, in general, modulate key physiological characteristics that
ultimately ameliorate animal development [48,49]. Strains of L. fermentum, in particular,
have proven convenient for augmenting growth parameters, which has been related to
their abilities to improve gut health by regulating architecture, epithelial integrity, microbial
diversity, and inflammation. Moreover, these strains have been employed to antagonize
the effects of potentially harmful bacteria such as Campylobacter, Salmonella, Clostridium,
and Pasteurella (Table 2).

Table 2. Effects of L. fermentum application in broiler chickens.

Strain Dose Administration Main Results References

L. fermentum
Biocenol

CCM 7514
1 × 109 CFU/0.2 mL Orally

↑ VH and ↑ VH:CD ratio in the small intestine; ↑
GC count in the duodenum and jejunum; positive

correlation between gut architecture and BW in
early stages

↑mRNA expression of IL-4, IL-18, IL-13; ↓mRNA
expression of IL-15, IL-16, IL-17RA, IL-9, IL-6RA

and CXCL-12; ↑ percentages of IgM and CD8 cells
in the cecum of young chickens

Antagonistic effects against C. jejuni, C. coli, and S.
Infantis; attenuation of intestinal impairments and

regulation of cecal inflammatory response

[107–110]
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Table 2. Cont.

Strain Dose Administration Main Results References

L. fermentum
1.2029 1 × 108 CFU/0.5 mL Orogastrically ↑ jejunal GC density; ↑mRNA expression of muc2

in the jejunum and ileum of 21-d-old chickens [111]

1 × 108 CFU/mL Orally

Lessening of C. perfringens-induced conditions;
intestinal necrotic lesions not observed after

treatment; ↑mRNA expression of IL-10; ↓mRNA
expression of IFN-γ and TLR2 in 28-d-old chickens

[112]

1 × 109 CFU/kG Dietary
Modulation of C. perfringens-stimulated expression

of pro-inflammatory cytokines in the jejunum in
28-d-old chickens

[113]

L. fermentum
KGL4 and

L. plantarum
KGL3A
complex

1 × 108 CFU/mL Dietary

↓ fecal coliform and enterococci count; ↑ fecal
lactobacilli count during initial growth phase;

well-organized intestinal epithelial lining and villi
structure; ↑ BW; ↓ LDL and ↑ HDL content in

serum of 42-d-old chickens

[114]

L. fermentum
NKN51 1 × 107 CFU/gM Dietary

↓ total count of E. coli; ↑ count of lactobacilli; ↑ VH,
VW, VH:CD ratio and surface area in the jejunum; ↑

BW and ↓ FCR of 28-d-old chickens
[115]

L. fermentum
1.2133 2.5 × 108 CFU Dietary

↑ number of lactobacilli in the ileum and cecum; ↓
Salmonella counts in the cecum of 15-d-old chickens

Lessening of intestinal lesions inflicted by S.
Pullorum

[116]

L. fermentum
(strain

unspecified)
1 × 108 CFU/kG 1 Dietary

↓ enterobacteria counts, ↑ lactobacilli counts in
ileum and cecum; ↑ BW and ↓ FCR of 28-d-old

chickens
Reduced effects of P. multocida on intestinal

microbiota; regulation of anti-inflammatory genes

[117]

L. fermentum
CICC 20176 approx. 5 log CFU/mL 2 RSM fermentation

↑ VH:CD ratio in the jejunum; ↑ concentration of
serum IgG and IgM; no differences in growth

performance of 21- and 42-d-old chickens
[118]

L. fermentum
CGMCC 0843 approx. 5 log CFU/mL 3 RSM fermentation

↑ percentages of dry matter digestibility in 42-d-old
chickens; ↑ VH:CD ratio in the jejunum and ileum
of 21- and 42-d-old chickens; ↑ lactobacilli count in

the ceca and colon of 21- and 42-d-old chickens

[119]

L. fermentum CCM
7158 1 × 109 CFU

In drinking
water

↓ total antioxidant status; ↓ content of serum
triglycerides; ↑ BW in 42-d-old chickens [120]

L. fermentum CIP
102980 1 × 107 CFU/mL Intragastrically ↑ BW and ↓ FCR in 36-d-old chickens [121]

L. fermentum JS
and S. cerevisiae

product

1 × 107

CFU/g
Dietary

↑ percentages of CD3, CD4, CD8 cells and ↑ mRNA
expression of TLR2 and TLR4 in the jejunum of 21-
and 42-d-old chickens; ↑ BW, ↓ FCR ratio during

starter period

[122]

L. fermentum
(strain

unspecified)
1 × 105 CFU 4 Orally

Protective effects against S. Enteritidis infection; ↑
percentages of macrophages and CD4 cells;

minimized lesions in the cecal tonsils in 11-d-old
chickens

[123]

L. fermentum
(strain

unspecified)
1 × 109 CFU/g Dietary

C. perfringens-induced downregulation of ZO-1,
Mucin-2, and Occludin in the jejunum of 13-d-old

chickens relieved by probiotic administration
[124]

1 Administrated in combination with L. plantarum, P. acidilactici, E. faecium, and S. cerevisiae; 2 in combination with
B. subtilis; 3 in combination with E. faecium, S. cerevisae, and B. subtilis; 4 in combination with L. acidophilus, L. reuteri,
and L. salivarius. VH: villus height; VW: villus width; GC: goblet cell; BW: body weight; FCR: feed conversion ratio;
LDL: low-density lipoprotein; HDL: high-density lipoprotein; RSM: rapeseed meal. Table symbols: ↑ increment;
↓ reduction.

3.1. Gut Health, Microbiota, and Homeostasis

The gut ecosystem is acknowledged as a complex environment involving different
constituents. The gut epithelium not only acts as a barrier against invading microorgan-
isms and their toxins but also plays a fundamental role in host immunity and nutrient
acquisition [125,126]. Intestinal epithelial as well as immune-associated cells are of prime
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importance; the metabolism of these cells could be modulated by various factors including
age, housing, gender, or diet [127,128]. Furthermore, the development of a stable micro-
biota is known to stimulate the immune system and prevent enteric diseases [129–131]. A
suspension of L. fermentum Biocenol CCM 7514 (1 × 109 CFU/0.2 mL), administered orally
during the first week of growth, augmented villus height in the small intestine in 8-day-old
and 11-day-old chicks. The probiotic ultimately improved the villus-height-to-crypt-depth
(VH:CD) ratio in the duodenum and ileum; a positive correlation between such conditions
and the animal body weight was also determined [107]. This strain has also improved the
aforementioned parameters in duodenal and jejunal sections of 15-day-old chicks; however,
in this case, the number of goblet cells was determined and proved to be higher in animals
exposed to the probiotic than in untreated ones, although no differences were observed
regarding the expression of muc2 [108]. On the contrary, in jejunal and ileal sections of
21-day-old chicks inoculated with L. fermentum 1.2029 (1 × 108 CFU/0.5 mL), expression
of this gene was higher than that of untreated birds. Nonetheless, an overall increment of
goblet cell density was only evidenced in the jejunum [111].

Dietary supplementation of L. fermentum KGL4 (1 × 108 CFU/mL) during the starter
phase did not alter intestinal architecture; although a decrease in coliform and enterococci
counts was reported, this was accompanied by a proliferation of lactobacilli. An overall
increase in animal body weight was observed in probiotic-treated animals [114]. Likewise,
dietary administration of L. fermentum NKN51 (1 × 107 CFU/gM) for a period of 28 days
reduced the total count of cecal E. coli while augmenting those of lactobacilli. In jejunal
sections, this strain improved villus height, villus width, VH:CD ratio, and surface area;
feed conversion ratio and body weight were also ameliorated [115]. Moreover, birds fed
a diet containing L. fermentum 1.2133 (2.5 × 108 CFU) showed larger numbers of lactic
acid bacteria than control animals in the ileum and cecum; in the latter, a reduction in
Salmonella counts was also registered [116]. Finally, L. fermentum has been used to develop
multi-strain probiotics with potential applications in broilers. For instance, this species,
along with L. plantarum, Pediococcus acidilactici, Enterococcus faecium, and Saccharomyces
cerevisiae, has been mixed at equal ratios and added to the diet at a dose of 1 × 108 CFU/kG
between the third and 21st days. Incorporation of this mixture into the diet did not only
reduce enterobacteria counts but also augmented the number of lactobacilli in both the
ileal and cecal contents of 28-day-old chicks. Exposure to the probiotic also improved
body weight and the feed conversion ratio [117]. Furthermore, a rapeseed meal fermented
with a mixture of probiotics, including L. fermentum CICC 20176 and L. fermentum CGMCC
0843, improved the VH:CD ratio in the jejunum and ileum of 21- and 42-day-old chicks; no
differences were found regarding animal performance [118,119].

Nutrition is crucial not only for sustaining the prooxidant-antioxidant balance but
also for regulating fat metabolic function [132,133]. Reactive oxygen or nitrogen species
can modulate primary immune defense, albeit prolonged exposure leads to a disruption of
the oxidant/antioxidant network; this imbalance ultimately results in an acceleration of
pathological inflammation [134,135]. The inclusion of L. fermentum CCM 7158 (1 × 109 CFU)
in drinking water reduced the total antioxidant status in 42-day-old broiler chickens,
although it influenced neither bilirubin nor albumin levels. Its administration, however,
reduced the content of serum triglycerides. This has also been observed in chickens
(42 days old) fed a diet enriched with L. fermentum KGL4 (1 × 108 CFU/mL); furthermore,
the probiotic reduced LDL content while augmenting levels of HDL. In both cases, an
increment in body weight was observed in probiotic-treated animals [114,120]. Similarly,
L. fermentum CIP 102980 (1 × 107 CFU/mL) improved growth performance and feed
conversion ratio in 36-day-old birds [121].

3.2. Modulation of Immune Reaction

Strains of L. fermentum are recognized for their immunomodulatory properties, as they
are able to interact with immune cells and either suppress or stimulate the production of
various inflammatory cytokines [136–138]. Oral administration of L. fermentum Biocenol
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CCM 7514 (1 × 109 CFU/0.2 mL) during the first week of growth did not only induce
expression of anti-inflammatory cytokines (IL-13, IL-4), but also reduced transcription of
pro-inflammatory factors in the cecum of one-week-old chickens, including IL-15, IL-16,
IL-17RA, LIF, IL-6RA, and CXCL-12 [107,109,110]. This treatment also increased the percent-
ages of lamina propria IgM plasma cells and intraepithelial CD8 cells [109]. The latter were
also augmented in the jejunum of 21- and 42-day-old chickens when a probiotic product
was added to the basal diet; this product contained 1× 107 CFU/g of L. fermentum JS and
2 × 106 CFU/g of S. cerevisiae. The percentages of intraepithelial CD4 and CD3 cells were
also enhanced, and overexpression of TLR2 and TLR4 was registered [122]. Additionally, a
mixture of probiotics, containing approximately 5 log CFU/mL of L. fermentum CICC 20176
and Bacillus subtilis (1:1), was used to ferment a meal based on rapeseed; dietary adminis-
tration of this mixture improved the concentration of serum IgG and IgM in 21-day-old
chickens [118].

3.3. Antagonism against Potentially Harmful Bacteria

The ability of L. fermentum to antagonize a variety of dangerous bacteria is not only
associated with competitive exclusion but also with the secretion of bacteriocins and
secondary metabolites that contribute to the overall antimicrobial activity [77,78,82–85].
Moreover, stimulation of the immune system by L. fermentum could prime the host’s
response to potential infections [96,98]. For example, the use of L. fermentum Biocenol CCM
7514 could prime the immune response during Campylobacter spp. infections. Campylobacter
has been traditionally regarded as commensal in birds, although it has been reported that
its presence induces the expression of pro-inflammatory cytokines, which may lead to
intestinal damage and ultimately to weight loss [139,140]. Inoculation with the probiotic
(1 × 109 CFU/0.2 mL) during the first week of growth enhanced the immune response
in 8-day-old challenged chicks. In cecal sections, the percentage of CD8 and IgA plasma
cells in the epithelium and lamina propria was augmented compared to C. coli-infected
animals; furthermore, a downregulation of inflammatory cytokines (e.g., IL-15 and IL-16)
was also observed [109]. A similar cecal response has been registered in the context of a
C. jejuni infection; early treatment with the aforementioned strain (1 × 109 CFU/0.2 mL)
modulated the expression of inflammatory cytokines, including IL-1β, IL-17, and IL-15, in
8-day-old challenged chicks. Moreover, in these animals, C. jejuni invasion reduced the
height of villi in the duodenum, jejunum, and ileum; in the latter section, crypt depth was
also affected. Application of L. fermentum Biocenol CCM 7514 did not only prevent these
effects but actually ameliorated intestinal architecture, even when compared to untreated
animals [107,110].

Different serovars of Salmonella are capable of eliciting intestinal mucosal damage in
broiler chickens [141,142]. The beneficial effects exerted by L. fermentum Biocenol CCM
7514 regarding gut health have also been evidenced in chickens challenged with S. Infantis.
Infection with this serovar reduced the VH:CD ratio in the small intestine of 15-day-old
birds. Early probiotic treatment (1 × 109 CFU/0.2 mL) did not only relieve the observed
impairments but also improved the calculated ratios when compared to basal levels. In
animals previously exposed to the probiotic, the presence of S. Infantis increased the surface
of villi and augmented the number of goblet cells in the small intestine compared to control
conditions. Finally, higher IgM serum levels were also reported in the co-exposure group
than in untreated birds [108]. Infection with S. Pullorum also affected intestinal home-
ostasis in 15-day-old chicks. First, the pathogen decreased total anaerobic bacteria while
increasing the number of total aerobic bacteria in the ileum and cecum; these outcomes
were relieved by animal exposure to L. fermentum 1.2133 (2.5 × 108 CFU). In particular,
probiotic administration reduced the presence of Salmonella in challenged animals. Sec-
ond, S. Pullorum infection triggered lesions in duodenal villi, evidencing accumulation
of erythrocytes and autolysis; the latter was also observed in ileal goblet cells. Previous
inoculation with the probiotic relieved these conditions, as few erythrocytes were found in
villi and injuries were local and fewer in number [116]. Similarly, S. Enteritidis negatively
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affected intestinal homeostasis, as it elicited hemorrhagic lesions and the expression of
inflammatory cytokines (IL-1β and LITAF) in the cecal tonsils of 11-day-old chickens. These
effects were lessened by oral inoculation of a mixture called Lactobacilli-based probiotic,
containing L. acidophilus, L. reuteri, L. salivarius, and L. fermentum (1 × 105 CFU). Ingestion
of the mixture proved to increase the percentage of macrophages and CD4 T cells, which
was not observed when birds were only infected with S. Enteritidis [123].

C. perfringens is associated with intestinal barrier damage, unstable intestinal micro-
biota, and reduced immunity in birds [143,144]. L. fermentum strains have also been shown
to be beneficial in diminishing pathogenic outcomes induced by these bacteria, regardless if
the probiotic was supplemented orally or in the diet. First, oral administration of L. fermen-
tum 1.2029 (1 × 108 CFU/mL) demonstrated protection against the negative effects caused
by C. perfringens in the ileum of 28-day-old animals. Infection prompted the upregulation
of inflammatory factors, such as IFN-γ and TLR2, and the downregulation of IL-10. The
latter was upregulated in the presence of the probiotic, whereas the former two were down-
regulated. In addition, the pathogen induced-hyperplasia of the lamina propria, along with
lymphocyte infiltration and crypt structure deterioration. Again, the lesions derived from
infection were not detected in birds previously exposed to the probiotic strain [112]. Second,
the incorporation of L. fermentum (1 × 109 CFU/g) into the basal diet relieved the intestinal
damage elicited by C. perfringens in 13-day-old chickens, which involved a decrease in
VH:CD ratio in the duodenum, jejunum, and ileum as well as a downregulation of key fac-
tors including ZO-1, Mucin-2, and Occludin in the jejunum. Previous exposure of infected
animals to probiotic treatment induced even better conditions than those registered in
untreated birds [124]. Likewise, C. perfringens inoculation stimulated the expression of the
pleiotropic and potentially inflammatory cytokine TGF-β4 in the jejunum; such expression
levels were reduced by dietary administration of L. fermentum 1.2029 (1 × 109 CFU/kG) in
21-day-old animals. However, treatment with the probiotic also increased transcription of
cytokines such as IL-1β, IFN-γ, IL-17, and TGF-β4 in older chicks (28-day-old); this has
been linked to the inhibitory and stimulatory effects of the probiotic in both the acute and
recovery phases of infection [113]. Finally, P. multocida causes the contagious disease known
as “avian cholera”, which is linked to high morbidity and mortality [145]. Infection by P.
multocida did not only alter the ileal and cecal microbiota but also reduced body weight
and increased mortality rates in 28-day-old chickens. A mix of probiotics, including L.
fermentum, was supplemented in the feed (1 × 108 CFU/kG). Challenged animals exposed
to the enriched diet showed no evidence of P. multocida effects on the intestine; body weight
loss and mortality rates were also attenuated. In general, previous exposure to the probiotic
reduced intestinal enterobacteria counts while augmenting the total number of lactic acid
bacteria. Furthermore, the probiotic mixture reduced cholesterol and glucose while eliciting
the production of lymphocytes and upregulating the expression of anti-inflammatory genes
in the cecal mucosa [117].

Results from animal trials involving L. fermentum strains have demonstrated the bene-
ficial effects of this probiotic on intestinal health and growth performance. These outcomes
have also evidenced the protective effects of L. fermentum against potential pathological
conditions induced by other bacteria, as it can adhere to the epithelium and secrete antimi-
crobial compounds. Moreover, treatment with these lactic acid bacteria improves intestinal
health, namely gut architecture as well as the immune response (Figure 1). Despite the
relevance of current research, further studies must be conducted to ensure the safety and
efficiency of these strains, especially regarding possible side effects.
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Figure 1. L. fermentum interacts with intestinal epithelial cells and gut microbiota. (a) Impairment
of villi and crypt architecture, along with intestinal lesions and limited mucin production, has
been observed in chickens challenged with Campylobacter, Salmonella, or Clostridium spp. Moreover,
these conditions alter the composition of the intestinal microbiota and prompt the production of
inflammatory factors. (b) Various strains of L. fermentum have shown the ability not only to attenuate
these responses but also to improve the overall intestinal environment. L. fermentum is known for
synthesizing antimicrobial compounds (AMC) (e.g., fermencin) and for competitively excluding
other bacteria, thus supporting the development of a stable microbiota and reducing the effects of
potentially harmful microorganisms. Indeed, L. fermentum treatment proved useful for ameliorating
the VH:CD ratio and also for augmenting the number of goblet cells. Probiotic exposure also induced
the downregulation of pro-inflammatory factors while upregulating the Th2 immune response. For
references, please see Table 2. Created with BioRender.com (accessed on 14 June 2023-Agreement
N◦ IS25JSZ31U). Figure symbols: ↑ increment; ↓ reduction.

4. Conclusions

The in vivo studies summarized here exhibit the beneficial effects of L. fermentum
administration on broiler chicken physiology and growth, especially with regards to gut
health, nutrition, and modulation of the immune response. Furthermore, this species has
demonstrated the potential for antagonizing the negative effects exerted by potentially
pathogenic bacteria. In particular, strains of L. fermentum have proven beneficial for ame-
liorating conditions in the small intestine, including VH:CD ratio, microbial composition,
integrity of the epithelium, and inflammation. Broiler chickens are bred for meat, and the
productivity of the industry has been associated with management, breeding, and disease
control practices that normally employ antibiotics for both prophylaxis and performance.
However, due to the public concerns raised by the use of antibiotics in animal husbandry,
many countries have banned their use as growth promoters. Thus, alternatives must be
designed not only to maintain production performance but also to curb the effects of infec-
tious diseases. Probiotics have been established as a potential strategy for preventing the
disruption of the gut microbiota and preserving intestinal homeostasis. They represent a
possible feed additive that may, or may not, have an influence on profitability; however,
in the absence of antibiotics, these species definitely represent an important option for
supporting animal growth and providing protection against invading pathogens. A variety
of L. fermentum strains, administered orally, dietary, or in drinking water, have proved
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advantageous for improving such conditions in broiler chickens. Further research, however,
should not only focus on determining the effects of probiotics on animal physiological
conditions but also on deciphering the mechanisms behind their action, which might lead
to the discovery of novel potential therapeutic targets. Undoubtedly, the evidence gathered
so far demonstrates that L. fermentum should be considered as a potential ingredient when
developing nutritional supplements aimed not only at improving growth conditions but
also at preventing and treating infectious diseases.
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