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Abstract
The egg is considered one of the best sources of dietary protein, and has an impor-
tant role in human growth and development. With the increase in the world’s
population, per capita egg consumption is also increasing. Ground-breaking
technological developments have led to numerous inventions like the Internet
of Things (IoT), various optical sensors, robotics, artificial intelligence (AI), big
data, and cloud computing, transforming the conventional industry into a smart
and sustainable egg industry, also known as Egg Industry 4.0 (EI 4.0). The EI
4.0 concept has the potential to improve automation, enhance biosecurity, pro-
mote the safeguarding of animal welfare, increase intelligent grading and quality
inspection, and increase efficiency. For a sustainable Industry 4.0 transforma-
tion, it is important to analyze available technologies, the latest research, existing
limitations, and prospects. This review examines the existing non-destructive
optical sensing technologies for the egg industry. It provides information and
insights on the different components of EI 4.0, including emerging EI 4.0
technologies for egg production, quality inspection, and grading. Furthermore,
drawbacks of current EI 4.0 technologies, potential workarounds, and future
trends were critically analyzed. This review can help policymakers, industrial-
ists, and academicians to better understand the integration of non-destructive
technologies and automation. This integration has the potential to increase pro-
ductivity, improve quality control, and optimize resource management toward
sustainable development of the egg industry.
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1 INTRODUCTION

Food security is a broad idea supported by four pillars:
food availability, accessibility, stability, and use that aims to
alleviate hunger by assuring a steady supply of nutritious
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foods (Alonso et al., 2020). Food security is an increas-
ingly important issue worldwide due to several anthro-
pogenic factors (such as climate change and air, water, and
soil pollution) that are influenced by the fast growth of
the world population. These factors also directly impact

Compr Rev Food Sci Food Saf. 2023;1–26. wileyonlinelibrary.com/journal/crf3 1

https://orcid.org/0000-0003-4888-7002
https://orcid.org/0000-0001-6621-8430
https://orcid.org/0000-0002-2930-9111
https://orcid.org/0000-0002-3525-3521
mailto:khaliduzzaman@gsis.u-hyogo.ac.jp
mailto:mkamruz1@illinois.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/crf3
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1541-4337.13227&domain=pdf&date_stamp=2023-08-21


2 OPTICAL SENSING FOR EGG INDUSTRY 4.0

F IGURE 1 Evolution of food production and transformation concepts.

primary food production and contribute to the rising global
demand. By 2050, when theworld’s population is projected
to increase from 7.7 to 9.2 billion, there will be a signifi-
cant scarcity of quality food. The urban population is also
predicted to increase by 66%, increasing food demand by
59% to 98% (Abbasi et al., 2022). Therefore, the safe and
steady production of commonly consumed foods like eggs
and poultry meat must be increased globally to meet ris-
ing food demand. The appropriate utilization of safe and
available food is the primary concern of food security. The
modern industry aims to ensure food security and safety by
creating a safer, more efficient, and more sustainable food
supply chain from farm to plate. Much of the world’s pop-
ulation is facing a global epidemic of diet-related chronic
diseases, leading to increasing experimentation with the
use of food as medicine to prevent, manage, and treat ill-
ness. With the progress of the industrial revolution, food
scientists look forward to promoting targeted properties
(such as high nutrient density, reducing the risk of cer-
tain diseases, and promoting digestive health) of foods so
they are able to support a productive and meaningful life
(Hassoun et al., 2022a).
An industry is a component of the economy that pro-

cesses raw materials and converts them into finished
products. The advent of steam power initiated the indus-
trial revolution in the 19th century, and in the 21st
century technological improvements have enabled the
emergence of new scientific paradigms which are known
as the Fourth Industrial Revolution (i.e., Industry 4.0;
I4.0). Generally, I4.0 refers to automation of industrial
activities using high interconnections to overcome the
boundary between the physical, digital, and biological
worlds (Lasi et al., 2014). The First Industrial Revolu-
tion began with the introduction of the steam engine and
mechanization, which resulted in industrial mass produc-
tion and advancements in manufacturing methods due
to electrification during the Second Industrial Revolu-
tion. Electrification was the most outstanding engineering
achievement of the 20th century. In the 1970s, the advent
of memory-programmable systems and computers led to

partial automation during the Third Industrial Revolution
(David et al., 2022; Figure 1). Substituting human labor
with intelligent machines, programs, and algorithms that
perform a portion of the labor made labor more productive
and effective. With the aid of hyper-technological solu-
tions and super-intelligent equipment, I4.0, currently in
the implementation phase, seeks to achieve higher levels of
multi-industrial automation and information integration
(Hassoun et al., 2022b, 2023b;Nuvolari et al., 2021; Zambon
et al., 2019). The I4.0 approach comprises non-invasive and
real-time sensing technologies, Internet of Things (IoT)
and cloud computing, big data analysis, and cyber secu-
rity, and is still a futuristic notion inmany areas. I4.0 seeks
to integrate devices that can quickly adapt to changing
environmental circumstances. To help ensure sustainable
global food security, I4.0 can have an important role from
primary production to finished product manufacturing,
providing enhanced food quality and safety (Chiles et al.,
2021; David et al., 2022; Hassoun et al., 2023a). To achieve
this, smart farming integrates technologies and systems
that enable various devices to make complex human-like
decisions on a computer. The current period is consid-
ered as the third AI boom, where built-in AI functions
have been developed and marketed in various fields, from
autonomous vehicles, surveillance cameras, and robots
to home appliances (Gupta et al., 2023). To maximize
the egg and poultry production in a sustainable manner,
farming technology and the concept of mechanization are
rapidly changing toward smart systems. Smart farming
is the current and upgraded version of farm mechaniza-
tion and some countries have already begun to implement
it in cropping and poultry production systems (Ichiura,
2022). Application of cloud computing, IoT and IoT-based
sensing system, augmented reality, robotics, simultane-
ous localization and mapping (SLAM)-based point cloud,
and depth imaging move it further along toward advances
like Digital Twins (DT). DT is a virtual twin of a physi-
cal system. It is a digital representation and control system
that can control a poultry farm and egg processing facil-
ities remotely. DT can be considered as a next phase or
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 3

F IGURE 2 Global egg production trend (FAO, 2020) and per capita egg consumption trend in the United States (USDA, 2020).

next generation of smart egg and poultry production sys-
tems. This DT implementation will not only work for
efficient management but also can work to build trust and
the transparency of the system (i.e., traceability systems)
in the food value chain (Istiak & Khaliduzzaman, 2022).
It is a cyber–physical interface that seamlessly integrates
sensing, monitoring, analyzing, planning, and smartly
controlling all farm operations (Ichiura, 2022; Phuyal et al.,
2020; Saha et al., 2022). Such visionary revolutions in the
food and agriculture industries may aim to lead humans
to a better life by promoting the consumption of food as
a medicine or super-food (Haque et al., 2023; Hassoun
et al., 2022a). Hopefully, people may enjoy greater sat-
isfaction with a healthy lifestyle, including the highest
quality of foods, which may promote overall well-being
and potentially reduce healthcare costs.
Eggs have long been an important component of the

human diet since they are regarded as one of the best
dietary protein sources (Ochs et al., 2019; Zhao et al., 2018).
Therefore, eggs have become important to the world econ-
omy as they are consumed and traded worldwide. As of
2020 statistics, global egg and poultry meat production
has significantly increased in the past two decades since
World War II (Gautron et al., 2021; Istiak & Khaliduzza-
man, 2022). The rise in egg production since 2000 is shown
in Figure 2. According to the Food and Agricultural Orga-
nization of the United Nations (FAO), the volume of global
egg production exceeded 86 million metric tons in 2020
(FAO, 2020).
With more than 35% of global egg production, China

is the biggest producer, followed by the European Union
(EU), the United States, and India (Gautron et al., 2021).
Nearly 60% of the world’s eggs are produced in these four
regions.World per capita egg consumption has risen in line
with growing production. For example, the per capita egg
consumption trend in theUnited States is given in Figure 2.
Digitalization and automation at every stage of the egg

industry, from collecting to delivery, must be expanded for

sustainable development. The I4.0 concept can be instru-
mental at every stage of the egg industry (including table
eggs and hatching eggs), including early sex determination
of layer egg embryos to prevent the hatching and killing
of male chicks, grading (based on freshness, size, com-
position, and origin), quality evaluation, packaging, and
storage.
The four basic stages of current table egg industry pro-

cessing operations are collection, washing, grading, and
packing. Although most table egg facilities have auto-
mated egg collection and washing, human labor is often
still required for egg grading based on many internal
and external qualities (Mehdizadeh et al., 2014; Rahman
et al., 2021b). Non-destructive grading based on numerous
parameters is a challenge, and although existing practices
in the conventional egg industry grade eggs based on a few
parameters, such as size and weight, the methods are still
tedious. I4.0 technologies would promote further sustain-
able development in the egg industry by supporting more
precise grading based on internal and external defects.
I4.0 also has numerous potential applications in product
and process monitoring, categorization, traceability, and
quality control (Demir & Dincer, 2020; Konur et al., 2021).
In the 21st century, sensing technologies like acous-

tic, electronic, and optical sensing technologies have been
focusing on the non-destructive studies of poultry eggs.
But those technologies are not yet widely applied in
the table egg industry for internal and external qual-
ity assessment of table and hatching eggs in real time.
Many studies reported the benefits of optical sensing
and computer vision technologies, such as hyperspec-
tral imaging (HSI) and spectroscopic techniques and,
accurate and non-destructive optical sensing technologies
that have been used for the assessment of egg freshness
(Giunchi et al., 2008; Karoui et al., 2006a; Liu et al.,
2020), gender (Corion et al., 2022; Khaliduzzaman et al.,
2019; Rahman et al., 2021a), fertility detection (Adegbenjo
et al., 2020; Liu & Ngadi, 2013; Smith et al., 2008), size
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4 OPTICAL SENSING FOR EGG INDUSTRY 4.0

(Narushin et al., 2004; Suktanarak & Teerachaichayut,
2017), gas composition (Zhang et al., 2022a), proximate
composition (Zhao et al., 2018), and fabrication (Chen
et al., 2019; Joshi et al., 2022). Although several studies
have been published on the use of I4.0 technologies in agri-
culture (Araújo et al., 2021; Bernhardt et al., 2021; Liu et
al., 2021; Patil & Shekhawati, 2019), the food and bever-
age industry (Akyazi et al., 2020; Demir & Dincer, 2020;
Konur et al., 2021; Luque et al., 2017), the meat indus-
try (Barbut, 2020; Echegaray et al., 2022; Kamruzzaman,
2023), supply chains (Ghadge et al., 2020; Mukherjee et al.,
2021), resources nexus (David et al., 2022), and traceability
(Hassoun et al., 2022c, 2023c), no review has been pub-
lished on I4.0 applications for the egg industry. Therefore,
this review article has focused on those I4.0 technologies
for which contemporary research exists related to the egg
industry. Specifically, this review focuses on I4.0 compo-
nents and I4.0 technologies for egg production, inspection,
and grading. Existing limitations and future trends are also
discussed.

2 AN OVERVIEWOF I4.0
TECHNOLOGIES

2.1 I4.0 concept

I4.0, the Fourth Industrial Revolution, is a technology-
based system that boosts process and production with
intelligent automation and high interconnectivity. The
term “revolution” refers to any radical societal change.
The radical change in production, economy, and soci-
etal structure began with the Third Industrial Revolution
(I3.0) in the 1950s with rapid computing and digitaliza-
tion advances (Ghobakhloo, 2020; Mahmoodi et al., 2022).
Even though automation largely started with the I3.0,
there is still a dependency on human operators and a
lack of interconnectivity. The I4.0 approach depends on
building a system that integrates everything effortlessly
and conveniently. Every service and instrument is in con-
stant contact, leading to a high level of synchronization
(Hassoun et al., 2022d). In this system, high interconnec-
tion and intercommunication between physical resources
and innovative technologies facilitate making the correct
decision (Gajek et al., 2022; Hughes et al., 2022). Non-
destructive and real-time sensing technologies, AI, IoT,
robots and actuators, and cloud computing are the pillars
of the I4.0 approach (Hassoun et al., 2022e). Therefore,
any industry adopting the “I4.0” model would be intel-
ligent, responsive, and more flexible, resulting in more
sustainable production. An illustration of the I4.0 con-
cept is shown in Figure 3. This innovative manufacturing
concept works based on four fundamental principles:

∙ Interconnectivity or interoperability: the capacity to
interconnect everyone and everything within an orga-
nization (e.g., people, machines, devices, and sensors)
globally to utilize data insights to boost productivity and
enhance procedures. This interconnection can be made
possible through IoT or IoP (Internet of People).

∙ Information transparency: providing comprehensive
information to operators to make decisions. This may
involve simulating the physical environment virtually by
integrating cyber–physical space.

∙ Technical assistance: the ability of cyber–physical sys-
tems (CPS) to assist humans by gathering and compre-
hensibly interpreting information to make intelligent
choices and quickly solve problems.

∙ Decentralized decisions: the capacity of CPS to take
independent actions and complete their tasks as
autonomously as conceivable. Higher-level operators
would focus on work that is exceptional, conflicted, or
interfered with work.

The goal of I4.0 is to transform traditional industry by
integrating advanced digital technologies and automation
to create intelligent, interconnected, and highly efficient
systems. However, I4.0 is not intended to replace humans
at all manufacturing phases but to boost their productivity.
The system requires efficient human resources due to their
decision-making abilities, problem-solving skills, techni-
cal expertise, adaptability, and ethical considerations. An
efficient I4.0 can deliver sustainable development by inte-
grating human capabilitieswith cutting-edge technologies.

2.2 I4.0 technologies

2.2.1 Non-destructive optical sensing
technologies

Optical sensing technologies for egg quality inspection
and grading include ultraviolet–visible–near infrared (UV–
Vis–NIR), terahertz (THz), fluorescence spectroscopy, cus-
tomized single wavelength optical sensors, and imaging
technologies such as computer vision system (CVS), mul-
tispectral and HSI, fluorescence imaging, red–green–blue
(RGB) and NIR imaging, and other techniques (Kam-
ruzzaman, 2023; Rahman et al., 2021a; Yao et al., 2022b;
Zhang et al., 2015). Their non-destructive and real-time
application makes optical sensing technologies potentially
suitable for the egg industry. One of the most important
aspects of the egg industry is the use of comprehen-
sive quality analysis methods to guarantee sustainable
marketing and consumption of eggs and egg products.
Unfortunately, egg quality analysis methods require expert
professionals to do a substantial number of tasksmanually,
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 5

F IGURE 3 Industry 4.0 for the egg industry.

which is time-consuming, tedious, expensive, susceptible
to human error, and, most importantly, often destructive
(Wieme et al., 2022). Therefore, extremely accurate, fast,
and non-contact technologies are needed to autonomously
inspect and separate undesirable eggs.
Spectroscopy is considered one of the most promising

technological solutions because it uses optical sensing to
determine the physical or chemical characteristics of the
sample (Hassoun et al., 2020; Pornchaloempong et al.,
2022). For analyzing physico-chemical properties, there
are several spectroscopic techniques available. The spec-
troscopic methods consist of spectra collection with a
spectrometer and chemometric analysis. After collecting
spectral data, reference data from the chemical analysis is
coupled with corresponding spectral data and further pro-
cessed for model development (Pu et al., 2020; Puertas &
Vázquez, 2020; Skvaril et al., 2017).Models using thewhole
range of spectral data have some drawbacks for rapid and
cost-effective use. Therefore, selectively using only infor-
mative bands, it is possible to build a more efficient model
and effectively predict the target component. Since spec-
troscopic methods do not involve the use or production
of dangerous compounds, they are regarded as green or
sustainable analytical methods. Given their ease of use,
speed, accuracy, and non-invasive sampling approaches,
these methods have been reported as one of the most effi-
cient technologies for egg characterization (Han et al.,
2022; Khaliduzzaman et al., 2021a; Zhao et al., 2018).
Computer vision (CV) is a branch of AI that uses vari-

ous deep-learning algorithms to train computers to analyze
and interpret data from conventional images and videos
(Kamruzzaman& Sun, 2016; Siswantoro et al., 2017; Valen-
cia et al., 2021; Wang, 2014). With the help of CV, constant

F IGURE 4 Schematic diagram of a computer vision system for
the egg industry.

monitoring of any object can be done, which is impossi-
ble for a human. Technological development has increased
the importance of machine vision (MV) technology many
fold in the food and agriculture industries. Generally, any
CV system consists of an image capture device (camera
or sensor), illumination source, image processing board,
and computer (Ma et al., 2017) (Figure 4). The imaging
techniques provide more specific information on special
variations than spectroscopic techniques.
Appropriate illumination substantially enhances image

processing and analysis by improving picture contrast and
minimizing shadows, noise, and reflections; thus, uni-
form lighting should be used to illuminate the whole
scene to evaluate exterior quality (Kamruzzaman & Sun,
2016). An image processing board converts pictorial images
into numeric forms for further analysis. The computer
processes numerical data and makes decisions based
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6 OPTICAL SENSING FOR EGG INDUSTRY 4.0

on pre-set conditions and triggers a sorting device that
removes any undesired product from the product stream.
Different modeling methods, such as artificial neural net-
works (ANN), regression, support vector regression (SVR),
support vector machine (SVM), and convolutional neu-
ral network (CNN)/deep learning, are used to classify
products based on image information (Wang, 2014).
Besides conventional spectroscopic and imaging tech-

niques, fluorescence spectroscopy and imaging techniques
may have a greater potential to study biological objects.
These methods could be potentially used for quantitative
and qualitative analysis of functional compounds in food.
Fluorescence imaging provides spatial information onhow
the fluorescence compounds are distributed and localized
in the biological sample (Khaliduzzaman et al., 2021b).

2.2.2 AI and IoT

The IoT describes the vast interconnection between phys-
ical technologies such as sensors, machines, comput-
ers, and software through collaborative data exchanges
(McLamore et al., 2021; Saha et al., 2022; Yu et al., 2022).
The ability of the IoT to apply to such a wide range
of applications provides the interconnected system sig-
nificant potential when discussing autonomous big data
analytics. IoT technologies are already being implemented
in many sectors, including food and agriculture, transport,
and health (Chigwada et al., 2022; Wang et al., 2021). Intel-
ligent IoT sensing technologies have been increasing for
monitoring agriculture farms, plant diseases, food qual-
ity assessment, and many other operations (Alonso et al.,
2020; Saha et al., 2022). AI is one of the primary forces
propelling the deployment of I4.0, together with cloud
computing and IoT. AI is a field of computer science that
simulates human cognition, learning, and knowledge stor-
age to carry out activities that ordinarily require human
intelligence (Ramesh et al., 2022). As part of AI, machine
learning (ML) focuses on developing computational meth-
ods or models to facilitate tasks such as accurately pre-
dicting target parameters (Patange& Pandya, 2022). Linear
regression, logistic regression, the Naïve Bayes algorithm,
the k-nearest neighbor (KNN) algorithm, SVM, and ANN
are the most commonML currently being used in the con-
text of poultry and Egg Industry 4.0 (EI 4.0) (Ojo et al.,
2022a; Soltani & Omid, 2015). Because ML can recognize
intricate patterns, trends, and relationships inmultidimen-
sional, heterogeneous data, and make precise predictions,
it can serve as a solid foundation for improved decision-
making and operations management, AI has been used to
develop systems for grading and classifying eggs, poultry,
meat andmany agricultural items (Gupta et al., 2023).With
the help of IoT, ML, and AI, it is possible to develop a sys-

tem that can be controlled virtually or used by end users,
even using smartphones.

2.2.3 Big data analytics and cloud
computing

Big data is defined as massive and complex data that is
challenging or impossible to process using conventional
methods. Volume, variety, velocity, variability, and value
are the five key dimensions of big data analysis (Wang
et al., 2021). For example, the rise in the use of social plat-
forms led to a rapid increase in the volume, variety, and
velocity (i.e., how fast information is generated) of data. It
has become important in the modern industry as it serves
as a reservoir of information. Big data analysis could be
an important factor in the modern transformation to I4.0.
For example, by analyzing social media data, it is possi-
ble to judge consumer demand trends and thus develop
products desired by consumers. As consumers become
more concerned about food quality and safety, the indus-
try needs to thoroughly analyze the intrinsic and extrinsic
factors that influence consumer acceptability to provide
customized products (Bouchard et al., 2021; Prinyawi-
watkul, 2023; Prinyawiwatkul & Chompreeda, 2017). It is
anticipated that quality control and industrial operations
will change significantly due to high-volume,multi-source
real-time data with processing, forecasting, and tracking
capabilities, encouraging the egg industry’s continuous
improvement (Hassoun et al., 2022b, 2022d). For example,
using multiple quality parameters for eggs from different
housing systems, big data analysis could help identify any
undesirable batch, and sort eggs based on freshness, fertil-
ity, gender, fabrication, and origin (Astill et al., 2020; Chen
et al., 2019; Joshi et al., 2022). Therefore, big data analysis
could help monitor or control quality and safety param-
eters in the egg industry through faster decision-making
and process automation.
Cloud computing is the delivery of computing resources

over the internet space, known as the cloud, to enhance
speed, availability, storage, and economic scale. Cloud
computing enables users to access and store information
virtually. For example, Zheng et al. (2021) proposed a
cloud-based poultry farm where information is managed
safely, efficiently, and effectively. The proposed system
includes a bottom layer that gathers data using Wi-Fi-
enabled transmitters and receivers, environmental sen-
sors, and single-chip microcomputers. Parameters such as
poultry weight, water, food intake, and egg quality can
all be gathered. The upper layer will include the bulk of
the software management system to provide the visual
interface. The in-between layer would be the primary hub
for cloud computing capabilities, allowing the top and
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 7

bottom layers to communicate while centralizing the data
and information collected from the other layers. This cloud
computing system’s overall feasibility was shown to have
a high potential for future implementation (Zheng et al.,
2021). The system effectively incorporates physical mod-
ules, software, a cloud database for data storage, and
hardware to bring together farm and poultry networks
more uniformly and efficiently, allowing for higher future
yields.
The use of different sensors and robotics is one of

the emerging trends in industrial-to-home applications
because they significantly impact productivity, monitor-
ing, and process control (Hjort et al., 2023). Wireless
sensors can be added to physical devices that continuously
provide environmental or product data. Different wireless
sensor networks can effectively do nearly any function,
including sensing data, data transfer, and communication
with the host device (Kucherenko et al., 2021). Coupling
with the sensors, the use of robotics has significantly
increased in monitoring, implementing, and controlling
systems in many industries, including poultry and eggs
(Lasarte-Aragonés et al., 2023; Ren et al., 2020). For exam-
ple, in the egg industry, sensors can detect when hens
have laid eggs, and robots can then collect the eggs and
transport them to a collection point. Moreover, sensors can
be used for quality control (weight, size, and shape mea-
surement), health monitoring (bird activity levels, feeding
patterns, and interactions), environmental control (mon-
itoring temperature, humidity, and ventilation), and feed
management. Moreover, virtual or augmented reality (AR)
systems would allow for remote management of these sys-
tems. The AR display is realistic and appears to the users
to be a part of the actual environment. Even though AR
has been used in the gaming and amusement industries,
it may soon bring a radical change in many other indus-
trial operations (Devagiri et al., 2022). With the help of AI,
cloud computing, and big data analysis, AR may become
the smartest dimension of I4.0 to boost productivity and
profitability.

3 APPLICATION OF I4.0
TECHNOLOGIES IN THE EGG INDUSTRY

As consumer demands for quality and safety have been
increasing globally, the contemporary egg industry needs
quick and automated egg quality assessment techniques.
To assure high levels of accuracy and integrity, the tech-
nologies of I4.0 are transitioning toward improved perfor-
mance, automation, and predictability. In the current egg
industry, several I4.0 technologies, including electronic
sensors, acoustic sensors, and optical sensing technolo-
gies (sensors, spectroscopy, and imaging technology) are

replacing older methods (Astill et al., 2020; Eyvazi et al.,
2021). IR spectrophotometer methods, for example, are
rapid, inexpensive, non-destructive I4.0 technology used
to detect the color, freshness, composition,manufacturing,
and gender of hatching eggs (Dong et al., 2019a; Narushin
et al., 2004). Using the MV, the outer physical information
of eggs, including their shape and color, can be determined.
IoT and robotics technologies automatically enable the col-
lecting, washing, grading, sorting, and packaging of eggs
(Ammar et al., 2022; Luperto et al., 2023). With the help of
cloud computing and ML, sensor technology helps detect
storage parameters, predict quality, and even observe prod-
uct history by end users using smart gadgets (Khan et al.,
2022; Kumar et al., 2022; Soni & Kumar, 2022). To satisfy
the growing need for safe egg production, industry must
adopt appropriate modern technologies. This section will
focus on primary optical sensing and CV technologies of
EI 4.0 for egg quality inspection and grading.

3.1 Spectroscopy

For determining the quality parameters of eggs, NIR spec-
troscopy (780 to 2500 nm) has been used more often than
other forms of spectroscopy, such as UV (100 to 400 nm),
visible light (400 to 780 nm), and mid (M)-IR (2500 to
4000 nm) (da Costa Filho et al., 2022; Harpaz et al.,
2022). The dataset produced from a collection of spectro-
scopic signatures is processed using an advanced computer
language to extract meaningful information. This is a
“calibrate–collect–predict” method for quantifying target
composition, where the spectroscopic signatures of a set
of samples serve as a fingerprint. Then multivariate sta-
tistical or ML approaches are used to determine whether
the fingerprint of an unknown sample is typical or atyp-
ical (Kamruzzaman et al., 2022). Spectroscopy could be a
reliable, and non-destructive egg quality evaluation tech-
nique that may replace the existing traditional industrial
practices. The application of spectroscopy in egg research
is summarized in Table 1.
Numerous studies have reported quick and non-

destructive spectroscopic detection methods for table egg
freshness and for the hatching egg applications (Table 1).
By scanning the exterior surface of the egg with a Raman
spectroscope, the chemometrics approach was used to
evaluate the freshness of the eggs. Spectra were collected
from the top, middle, and bottom of 125 eggs over 60
days. A partial least squares regression (PLSR) model was
developed using physical and chemical freshness param-
eters. The Haugh Units (HU), albumen pH, air chamber
diameter, and air chamber height had correlation coeffi-
cients >0.9, indicating a strong correlation between the
Raman spectrum (100–3000 cm−1) of the egg surface
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8 OPTICAL SENSING FOR EGG INDUSTRY 4.0

TABLE 1 Use of spectroscopic techniques for egg quality determination.

Egg parameter
Spectroscopic
method

Spectral
range/frequency

Model
algorithm

Accuracy
indicators Reference

Freshness Raman 100–3000 cm−1 PLSR Rp = up to 93.5 (Liu et al., 2020)
Vis–IR 340–1030 nm PLSR Rp = 0.91 (Dong et al., 2019b)
Microwave 0.9–1.7 GHz PLSR and ANN 100% (Akbarzadeh et al., 2019)
NIR 10,000–4000 cm–1 GA-ANN Rp = 0.87 (Lin et al., 2011)
Vis–IR 400–1100 nm GA-ANN Up to 100% (Mehdizadeh et al., 2014)
Radio 0.1 Hz–20 MHz ANN 100% (Soltani & Omid, 2015)
Vis–IR 570–750 nm PLSR R = 0.86 (Kemps et al., 2006)
FT–NIR 833–2500 nm PLSR R2p = up to

0.76
(Giunchi et al., 2008)

Vis–IR 340–1030 nm PLSR R2p = 0.89 (Dong et al., 2020)
Fertility Vis–IR 330–1030 nm NB classifier 95.1% (Dong et al., 2019a)

Vis–NIR 575–578 nm LDA 100% (Islam et al., 2017)
Shell color,
integrity

NIR 400–2400 nm BP-NN Up to 100% (Han et al., 2022)

Shell thickness THz 0.5–1.2 THz LR R2 = 93.4% (Khaliduzzaman et al.,
2020a)

Shell refractive
index

THz 0.5–1.2 THz LR R2 = 49% (Khaliduzzaman et al.,
2020b)

Proximate
composition

NIR 950–1650 nm PLSR R2p = 0.80 (Zhao et al., 2018)

Fabrication FT-IR 1800–600 cm−1 PLS-DA Rp of 0.99 (Joshi et al., 2022)
NIR 10,000–4000 cm−1 DDCM 98.8% (Chen et al., 2019)

Cholesterol UV–Vis–NIR 190–2500 nm PLSR R2 = 0.93 (Puertas & Vázquez,
2019a)

Omega-3 FA FT–Raman 3100–990 cm−1 PLS-DA 100% (de Oliveira Mendes
et al., 2019)

Housing system UV–Vis–NIR 190–2500 nm QDA 100% (Puertas & Vázquez,
2019b)

Gender Vis–NIR 300–1145 nm PLS-DA 99.5% (Corion et al., 2022)
NIR sensor 870 nm LDA 84% (Alin et al., 2019)
NIR sensor 870 nm KNN 84.6% (Khaliduzzaman et al.,

2021a)
Vis–NIR 500–654 nm LR 76% (Rahman et al., 2021a)

Abbreviations: ANN, artificial neural network; BPNN, back propagation neural network; DDCM, data driven-based class-modeling; GA, genetic algorithm; KNN,
k-nearest neighbor; LDA, linear discriminant analysis; NB, Naïve Bayes; PLS-DA, partial least square discriminate analysis; PLSR, partial least square regression;
QDA, quadratic discriminant analysis; SVM, support vector machine.

and freshness, which would aid in on-site testing of egg
freshness (Liu et al., 2020).
For a fast evaluation of egg freshness, Vis–NIR spec-

troscopy has also shown good results. The Vis–NIR
approach predicted albumen pH as the freshness evalua-
tion parameter of two egg varieties (White Leghorns and
Bantam) (Dong et al., 2019a). Various pre-processing tech-
niques and PLSR were used to create prediction models.
In addition, methods for transferring calibration models
from one variety to another were investigated, includ-
ing global updating, direct standardization (DS), and
slope/bias correction (SBC). The best albumen pH pre-

diction was achieved using the SBC approach, where the
correlation coefficient for the predicted set was ∼0.9.
In another study, a group of 60 eggs was kept in storage

(18◦C, 55% RH) for 0, 2, 4, 6, 8, 10, 12, 14, or 18 days to pro-
duce a difference in freshness (Kemps et al., 2006). Based
on the transmission spectra, a PLSmodel was developed to
anticipate the albumen’s HU and pH. The HU and pH of
the albumen had correlation coefficients of 0.842 and 0.867
between the predicted and the reference value, respec-
tively. The comprehensive freshness indexes (shape, yolk,
HU, albumen pH, air cell width, and eggshell thickness)
were also reported in another study (Dong et al., 2020).
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 9

The results showed that when compared to individual
freshness indexes, the freshness indicator had a greater
capacity to predict outcomes, with a predictive correlation
value of 0.891 and a root mean square error (RMSE) of 1.0.
Recently Vis–NIR spectroscopy technology has been

shown to have promise as an egg-sorting model that could
be automated based on eggshell color, integrity, and feed-
ing mode (Han et al., 2022). The eggshell color, integrity,
and laying hen feeding mode (caged or cage free) were
identified by their characteristic bands using the backprop-
agation (BP) neural network combined with Soft Inde-
pendent Modeling of Class Analogy (SIMCA) methods.
Large-scale laying hen farms may use this I4.0 technology
for smart and intelligent grading. The light scattering prop-
erties were successfully characterized between 0.9 and
1.7 GHz. Akbarzadeh et al. (2019) were able to predict
air cell height, thick albumen height, HU, and albumen
pH of eggs with up to 100% accuracy. Even though lower
prediction accuracies for freshness determinations using
spectroscopic techniques have been reported (Giunchi
et al., 2008; Karoui et al., 2006b), using different chemo-
metrics led to better prediction models (Granato et al.,
2018; Lin et al., 2011; Soltani & Omid, 2015).
The traditional process of determining the fertility

of chicken eggs, known as candling, is laborious, slug-
gish, and ultimately less effective, resulting in signifi-
cant economic losses (Ramiro et al., 2018). Therefore,
a non-destructive, quick, and online prediction method
is required to help with the detection of early egg fer-
tility. Spectroscopy is one of the popular methods for
non-destructively detecting the fertilization of eggs. The
Vis–NIR transmittance spectroscopic method was used to
identify unfertilized duck eggs (Dong et al., 2019a). Trans-
mittance spectral data were collected with eggs deposited
by the same flock of ducks. Overall validation set pre-
diction accuracy was 94.5%, while internal validation
prediction accuracy was 95.1%. With the NB modeling and
SNV pre-processing, the prediction accuracy for 667 duck
eggs was 94.8%. These results showed that the Vis–NIR
transmittance spectroscopymethod successfully identified
unfertilized eggs.
Culling of male day-old chicks is an animal welfare

issue in the table egg industry that leads to significant
ethical concerns (Krautwald-Junghanns et al., 2018; Rei-
thmayer &Mußhoff, 2019; Reithmayer et al., 2021). Recent
research indicates that Vis–NIR imaging is more accurate
than HSI in determining the gender of eggs during incu-
bation, which might reduce testing costs (Corion et al.,
2022). In their work, 600 Isa brown chicken eggs were
individually lit with halogen lights on days 8, 14, and 18
of incubation. The signal was obtained between 300 and
1145 nm in the Vis–NIR region. They obtained predic-
tion accuracies of 97.8% and 99.5% on the 13th and 14th

days of incubation, respectively. This study opens the door
to the high-throughput and economical use of smaller,
less expensive spectrophotometers in commercial layer
industry hatcheries.
Eggshell color is the most apparent exterior characteris-

tic of eggs and also serves as a benchmark for customers
to assess the quality of eggs (Berkhoff et al., 2020; Sami-
ullah et al., 2015). Studies have also shown that colored
eggs have greater physiological and antioxidant activity
than white eggs (Mertens et al., 2010). Recently, a NIR
spectroscopy-based automated egg-sortingmodel based on
eggshell color, integrity, and feeding mode was published
(Han et al., 2022). The egg industry needs to determine
the suitability of this fast-response, non-contact, and non-
destructive detecting technique. To distinguish between
eggshell colors, integrity, and feeding modes, researchers
used BP neural networks, principal component analysis
(PCA) combined with BP and SIMCA. According to the
predicted outcomes, pink, green, and white were correctly
categorized with up to 100% accuracy. As a result, with fur-
ther study and validation, this technique might be used
commercially in the egg industry.
According to EU regulations, there are four types of

hen housing systems: organic, free range, barn, and cages
(Puertas & Vázquez, 2019b). Unfortunately, many dishon-
est traders identify their products as organic even when
they come from other housing systems to profit financially
(Matthews & Sumner, 2015; Ochs et al., 2019). However, no
analytical techniques can fully identify the housing sys-
tems listed on an egg label. Puertas and Vázquez (2019b)
successfully categorized eggs based on housing systems,
using UV–Vis–NIR spectroscopy, and extracted lipid infor-
mation as the reference value. Six eggs were collected in
duplicate from each of the four farming systems supplied
by Granja Campomayor (Lugo, Spain). Results from the
quadratic discriminant analysis of the spectrum of the yolk
lipid extract showed 100% accuracy of egg categorization.
Thus, UV–Vis–NIR technology may be a viable innovative
tool for analytically verifying farming techniques, which
will aid in ending unethical egg labeling practices.
Fluorescence techniques can be used to assess egg fresh-

ness as well as the chemical nature of the egg and eggshell.
The eggshell emits a red fluorescence, whereas albumin
emits blue and green fluorescence when UV light is used
(Aboonajmi & Mostafaei, 2022). THz spectroscopy could
potentially be used for shell quality estimation and grading
for parameters such as shell strength, compactness, and
thickness (Khaliduzzaman et al., 2020a, 2020b).
Determination of egg fat, protein, and moisture con-

tent is essential since they are closely related to nutritional
value and quality. Soxhlet extraction, Kjeldahl, and oven
drying are the standard methods to determine fats, pro-
teins, and moisture, respectively, in biological products.
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10 OPTICAL SENSING FOR EGG INDUSTRY 4.0

However, these techniques are costly, time-consuming,
and destructive. On the other hand, NIR spectroscopy is
rapid, affordable, safe, and non-destructive in determin-
ing the composition of meat (Kamruzzaman, 2021; Serva
et al., 2023; Silva et al., 2020), grain (Ba et al., 2023; Fatemi
et al., 2022), dairy (Balabin & Smirnov, 2011; Pu et al.,
2020), and poultry (Parastar et al., 2020). To replace tra-
ditional approaches, a technique based on NIR reflectance
spectroscopy can be used to determine the moisture, pro-
tein, and fat contents of homogenized egg albumen and
egg yolk (Zhao et al., 2018). For all chemical compositions,
the R2p for external validation was>0.8. The spectroscopic
approach may be a promising technique for quantifying
the nutritional composition of eggs.
Cholesterol acts as a precursor to vitamin D, the syn-

thesis of which is essential for bone health and several
other physiological functions, including the production
of certain hormones, while too much cholesterol intake
can increase the risk of cardiovascular diseases (Palomar
et al., 2023; Puertas & Vázquez, 2020). Therefore, know-
ing the cholesterol content of different egg varieties may
be helpful for human health. The most effective methods
for quantifying cholesterol include gas chromatography,
liquid chromatography, and enzymatic approaches (Palo-
mar et al., 2023). However, these methods need expensive
instruments that require expensive upkeep and must be
maintained by careful, trained employees. Recently, a sim-
ple and affordable approach for measuring the cholesterol
in egg yolks using UV–Vis–NIR spectroscopy was devel-
oped (Puertas &Vázquez, 2020). Two types of yolk samples
(from shell eggs and pasteurized yolk) were homogenized,
and then the UV–Vis–NIR spectra were acquired. The
reference cholesterol contents were determined using a
commercial enzymatic photometric test kit. The results
showed that UV–Vis–NIR spectroscopy could measure
cholesterol from egg yolks or pasteurized egg yolks with
a 93% prediction accuracy.
A class of essential (E) fatty acids (FA) known as omega-

3 fats serve important functions in the human body and
provide several important health benefits. All eggs have
some omega-3 polyunsaturated EFA from dietary sources
(Samman et al., 2009). Precursors of EFA have been added
to chicken feed to produce eggs high in omega-3 FA
(Irawan et al., 2022). Therefore, verifying and classifying
eggs according to their omega-3 FA concentration is help-
ful for health reasons and to prevent misbranding. The
most used technique for measuring FA is gas chromatog-
raphy, which is laborious and involves several sample
preparation steps (Zhou et al., 2019). All segments of the
food industry pay attention to how long analytical pro-
cesses take, especially when it comes to perishable foods
like fish, milk, eggs, and meat. The food industry’s quality
control teams would like to develop unique, efficient, and

simple approaches that require minimal sample prepara-
tion. To differentiate eggs that are omega-3 FA-enriched,
Raman spectroscopy and multivariate supervised classi-
fication have been developed (de Oliveira Mendes et al.,
2019). Using a PLS-DA model, almost all samples could be
categorized correctly.
Egg fabrication with chemical compounds has drawn

attention and increased food safety concerns worldwide
due to publicized incidents of imitation eggs in Beijing
in 2011 (Fearnley, 2022). As a result of the use of haz-
ardous chemicals in fabricating, consumers may be at risk.
Fake eggs will have different optical characteristics from
actual eggs because of their differing elemental composi-
tion. Recently, FT-IR spectroscopy was used to obtain the
optical properties for the non-destructive identification of
fabricated and natural eggs (Joshi et al., 2022). One-way
ANOVA and PCA were done to evaluate the FT-IR data
corresponding to the chemical composition of fabricated
eggs. Specific informative wavelengths for the exterior and
interior components of real and fabricated eggs were iden-
tified. Then, the PLS-DA and SVM models were able to
classify real and fabricated eggs with 100% accuracy.

3.2 Computer vision

Due to their non-invasive and unintrusive nature, CV
technology has been applied for size, mass, and volume
determination and sorting and grading of eggs. Recent
applications of CV in the egg industry are listed in Table 2.
Dong et al. (2021) used an MV system to classify fer-

tile and infertile duck eggs. They used linear discriminant
analysis (LDA), Naïve Bayes (NB), and SVM algorithms to
develop discriminant models for various incubation dura-
tions. On day 5, the SVM classifier showed the best results
with four features in the validation set. The prediction
accuracy for the fresh unidentified duck eggs was 92.1% on
day 5 using the existing SVM model. Recently Zhu et al.
(2022) used the SVM and LS-SVMmodels to identify infer-
tile eggs using CV. The LS-SVM model achieved greater
accuracy using less time in identifying infertile and dead
embryo eggs than the SVM model. The LS-SVM model
achieved a 100% accuracy to detect infertile eggs at day 4.0.
CV technology with deep-learning approaches is used

for defect detection in commercial eggs (Valencia et al.,
2021). These authors used a set of algorithms for iden-
tifying and classifying dirty and cracked eggs based on
three distinct methods: classical approaches, CNN, and
semantic segmentation. The average accuracy for the three
approaches was 94%, 91.3%, and 85.7%, respectively. The
average processing time for each approach was 0.049,
0.11 and 0.47 ms, respectively. The grey level concurrence
matrix (GLCM) was used to reconstruct a high-frequency
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 11

TABLE 2 Application of computer vision technology in egg classification.

Classification basis Data analysis Accuracy Reference
Fertility ANN Up to 98.3% (Hashemzadeh & Farajzadeh, 2016)

SVM 92.1% (Dong et al., 2021)
SVM, LS-SVM 100% (Zhu et al., 2022)

Crack, breakage, dirt, hole CNN 94.8% (Nasiri et al., 2020)
GLCM 96.7% (Wang, 2014)
PC
CNN

94%
91.3%

(Valencia et al., 2021)

Volume ANN 97.4% (Siswantoro et al., 2017)
Double yolk CNN 98.8% (Ma et al., 2017)

Abbreviations: ANN, artificial neural network; CNN, convolutional neural network; GLCM, grey level cooccurrence matrix; LS-SVM, least square SVM; PC, pixel
counting; SVM, support vector machine.

sub-image from the captured image for egg damage
detection (Wang, 2014). Experimental results showed a
prediction accuracy of 96.7% after PCA dimensionality
reduction. An automatic egg-sorting system using a deep
CNN was proposed for detecting undesirable (broken,
cracked, or with a hole in the shell) eggs (Nasiri et al.,
2020). VGG16 architecturewasmodifiedwith a global aver-
age pooling layer, dense layers, a batchnormalization layer,
and a dropout layer to categorize unwashed egg images.
Using five-fold cross-validation, the CNN model attained
an overall average accuracy of 94.8%.
Volume is another crucial aspect of the egg-sorting pro-

cess. Egg volume has been predicted using a CVS and an
ANN model (Siswantoro et al., 2017). A top-down picture
of an egg was taken and then processed to extract one- and
two-dimensional (2D) size properties, which were utilized
as input for the ANN. The results had a classification accu-
racy of 97.4%, indicating that the predicted volume had a
high linear correlation with the measured volume. Utiliz-
ing CV to detect double-yolked (DY) eggsmay enhance the
efficiency of the poultry business by reducing egg waste
during incubation and/or boosting sales revenue. Ma et al.
(2017) established two ways for determining DY eggs using
the CVS. A charge-coupled device (CCD) camera recorded
transmittance pictures of DY and single-yolked (SY) duck
eggs to identify them based on their form characteristics.
Fisher’s linear discriminant (FLD) model and the CNN
model were used to classify eggs. The classification accu-
racy of the FLD model for SY and DY eggs was 100% and
93.2%, respectively, whereas the classification accuracy of
the CNN model for SY and DY eggs was 98% and 98.2%,
respectively.

3.3 Hyperspectral imaging

HSI is a prospective I4.0 technology that provides spectral
and spatial information about each pixel in the image to

model the expected quality parameters of eggs (ElMasry
et al., 2012; Goetz et al., 1985). With HSI, it is possible to
remotely obtain images of many bands. The HSI data can
be analyzed to characterize the product’s physico-chemical
and geometrical properties due to the integrated nature
of the imaging and spectroscopy (Jia et al., 2017). With
HSI, any image is a three-dimensional (3D) data block that
contains a stack (i.e., one behind another) of 2D images
(x rows × y columns) at different wavelengths (λ), which
provides precise information about the properties of the
object (Basantia et al., 2019; Kamruzzaman & Sun, 2016).
The behavior of electromagnetic energy being absorbed,
reflected, scattered, and emitted when the light of a par-
ticular wavelength passes through an item is known as
the spectral signature or fingerprint and is unique to each
object. By analyzing the spectral data of any object, it is
then possible to identify different components or proper-
ties of the object. A schematic diagram of HSI techniques
is shown in Figure 5.
Recently, HSI has become industrially known for its

use in process monitoring, product quality control, and
raw material analysis (Kamruzzaman, 2023). It is one of
the efficient optical methods used to assess the quality of
various products, including meat (Kamruzzaman, 2023),
poultry (Li et al., 2023; Yoon et al., 2011), fish (Cheng &
Sun, 2014; Qin et al., 2020), and fruits and vegetables (Çetin
et al., 2022; Tung et al., 2018; Wieme et al., 2022). Sev-
eral research projects on egg characterization using HSI
technology have been done. However, numerous processes
in the egg industry are still done manually, which sig-
nificantly increases the possibility of mistakes. Therefore,
as a fast, accurate, and non-destructive method, HSI may
be a state-of-the-art technology for the egg industry. The
accuracy of HSI is notably higher in distinguishing origin,
transparency, freshness, fertility, and hatching properties
(Liu & Ngadi, 2013; Sun et al., 2017; Yao et al., 2022b;
Zhang et al., 2014). The application of HSI in egg research
is summarized in Table 3.
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12 OPTICAL SENSING FOR EGG INDUSTRY 4.0

F IGURE 5 Schematic diagram of a typical hyperspectral imaging system: (a) Components of a typical line scan hyperspectral
reflectance imaging system and (b) conceptual view of hypercube comprising spatial (x and y) and spectral (λ) dimensions.

TABLE 3 Summary of hyperspectral studies for egg parameters.

Application Spectral range (nm) Data analysis method Accuracy (%) Reference
Freshness 900–1700 PLSR 85–91 (Suktanarak &

Teerachaichayut, 2017)
Egg hatching properties 400–1000 LVQNN 70–100 (Zhang et al., 2014)
Egg fertility 900–1700 K-M clustering 81.2–99.4 (Liu & Ngadi, 2013)
Internal quality (freshness,
bubble formation)

380–1010 PLSR 90–96.3 (Zhang et al., 2015)

Freshness, scattered yolk,
and eggshell cracks

401–1002 XGBoost 93.3–97.3 (Yao et al., 2022b)

Gas composition 380–1038 CNN 99.9 (Zhang et al., 2022a)
Origin of table egg 871.6–1766.3 SVM 96-99.3 (Sun et al., 2017)

Abbreviations: CNN, convolutional neural network; LVQNN, learning vector quantization neural network; PLSR, partial least square regression; SVM, support
vector machine.

Egg freshness is an important parameter for consumers
and egg processing plants. Due to gas exchange and mois-
ture loss through the shell, the egg white or albumen
becomes thinner, a primary measure of egg freshness
reduction (Xu et al., 2022; Yao et al., 2022a). In traditional
practice, HU are used as an indicator of egg freshness.
This measurement requires the breaking of egg samples to
measure the height of the albumen layer (Narushin et al.,
2021; Sehirli & Arslan, 2022). The HSI has been used to
non-destructively determine egg freshness to categorize
eggs (Özdoğan et al., 2021; Suktanarak & Teerachaichayut,
2017; Xu et al., 2022; Zhang et al., 2022a, 2015). It has
been shown to be feasible to instantaneously determine
egg freshness. The conventional technique of determin-
ing freshness could thus be replaced with HSI technology,

ensuring optimal data integration and used under the
umbrella of the I4.0 approach. HSI was successfully used
to assess the interior quality of eggs, including freshness,
bubble formation, and scattered yolk (Zhang et al., 2015).
They used successive projection algorithms, SVR, and sup-
port vector classification models to predict a particular
egg parameter. They proposed that HSI might be help-
ful to evaluate the interior characteristics of eggs quickly
with a prediction accuracy of >90%. Yao et al. (2022b) suc-
cessfully determined eggshell cracks, scattered yolks, and
freshness of the egg. The spectrum data were normalized
using a standard normal variate, and wavelength selection
was optimized using an iterative retains informative vari-
able. The XGBoost egg freshness model has a coefficient of
R2p of 0.9 and an RMSE of 4.6. Predictions of eggs with a
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 13

scattered yolk had an accuracy of 97.3% based on the mor-
phological feature ratio, whereas predictions for cracked
eggs had an accuracy of 93.3%.
Gas composition, which may change during storage

and transportation, is another important indication of egg
freshness. The electronic nose (e-nose) and HSI method
were merged with the multi-data-fusion-attention net-
work (MDFA-Net) technology described by Zhang et al.
(2022a) to determine the gas composition. The MDFA-Net
showed strong prediction accuracy (99.9%) for egg cate-
gorization based on gas composition compared to other
deep-learning techniques. Several researchers found that
the assessment of freshness and quality criteria using HSI
had a good prediction accuracy (Dai et al., 2020; Fu et al.,
2020; Huang et al., 2020). Furthermore, advanced multi-
variable analysis and feature selection techniques might
improve the model accuracy for egg freshness and interior
quality prediction (Fu et al., 2020; Huang et al., 2020).
Commercial hatcheries may operate more efficiently

and save money by saving space and maintaining hatch-
ing quality through the use of non-destructive technologies
such as HSI. An egg requires considerable time and energy
to hatch, taking 21 days on average, for example, for chick-
ens (Jalili-Firoozinezhad et al., 2020; Nordquist et al.,
2022). The percentage of egg embryos that develop ranged
from 86% to 95%, meaning that a significant number of
eggs fail to hatch every year (Ipek & Sozcu, 2017). These
unhatched eggs require space and energy. This is an issue
for the company andmight contaminate a hatching unit by
spreading diseases or other biological material on which
bacteria can readily grow.
HSI has been used to identify an egg’s early hatching

characteristics (Adegbenjo et al., 2020; Liu & Ngadi, 2013;
Smith et al., 2008; Zhang et al., 2014). By assessing the
changes in light transmission and morphological traits of
infertile eggs, this system evaluated the hatching potential.
HSI can effectively predict egg fertility with an accuracy of
up to 100%, depending on the incubation periods. Liu and
Ngadi (2013) incubated 174 white eggs (of which 18 were
infertile) for 4 days in a commercial incubator. Using an
HSI technique, the area of interest of individual images
was segmented, and then, using Gabor filters, the image
information was retrieved. This approach showed a pre-
diction accuracy of up to 100% for egg categorization.
But several studies have also observed lower accuracy
(63%–95%) of early egg fertility determinations (Lawrence
et al., 2006; Smith et al., 2008). Therefore, PCA was done
by Zhang et al. (2014) to extract spectral features fromHSI,
and an image segmentation technique was used to sepa-
rate morphological data. The results showed that a model
utilizing image morphological features could obtain better
precision and applicability than one using characteristic
spectral parameters, and the discrimination accuracy for

eggs with embryo development was 97% and 100% on days
3 and 4, respectively.
Shell eggs production is divided into two primary cat-

egories: extensive eggs, where hens produce in a more
natural environment, and intensive eggs, where hens pro-
duce on indoor farms (Pires et al., 2021). Many people
believe that extensive eggs have higher protein and fat
content (Ochs et al., 2019). Studies also showed that
extensive eggs have a distinct chemical composition and
some physical characteristic differences from intensive
eggs (Kowalska et al., 2021; Lordelo et al., 2020; Vlčková
et al., 2019; Zita et al., 2018). It is challenging to clas-
sify eggs based on origin visually or using a cholesterol
content-based identification technique. Using HSI, Sun
et al. (2017) successfully categorized eggs based on the
housing systems. The grid search (GS) algorithm, genetic
algorithm (GA), particle swarm optimization (PSO), and
cuckoo search (CS) algorithms were combined using SVM
methodologies to give an SVM identification model with
an accuracy ranging from 96% to 99.3%.

3.4 AI, IoT, and cloud computing

AI is a fundamental component of computer science that
enables the development of intelligent systems capable
of doing tasks that generally require human cognition.
It is a versatile tool that allows information to be inte-
grated, analyzed, and applied to give enhanced decision-
making, thereby increasing productivity and profitability.
TheGoogle search engine, for example, uses AI to decrease
the amount of human effort required to locate desired
information accessible on the internet. AI, IoT, and cloud
computing can effectively address various production-
related difficulties encountered by the egg industry, includ-
ing grading and classification costs, various animal welfare
considerations, a lack of trained and skilled workers, and
environmental consequences (Ojo et al., 2022b; Wongchai
et al., 2022). It is anticipated that by 2050, an average size
(∼50,000 birds) chicken farm will be able to create 4.1
million data points using different sensors and other IoT-
connected appliances (Astill et al., 2020; Wongchai et al.,
2022). On today’s high-tech farms, a vast array of sen-
sors are used to measure bird weight, temperature, feed
and water intake, humidity, ammonia levels, CO2 levels,
and several other characteristics (Astill et al., 2020; Lin
et al., 2016; Zhang et al., 2023). Data analytics also help to
project outcomes by collecting and analyzing this data. For
example, monitoring and analyzing data can predict birds’
weight after 30 days. Computer-controlled technology and
robots might significantly minimize human engagement
with the birds, minimizing sources of contamination and
stress, and maximizing production output compared to
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14 OPTICAL SENSING FOR EGG INDUSTRY 4.0

F IGURE 6 Schematic diagram giving an overview of an Internet of Things and artificial intelligence-based smart poultry farming
system (Ichiura, 2022).

complete reliance on humans. AI can reduce mistakes
in industrial tasks by automating certain processes, pro-
viding real-time monitoring and analysis, and identifying
potential errors before they occur. An AI-based innovative
poultry farm is shown in Figure 6.
The introduction of AI is a four-step process that has

become less complicated due to the invention of accu-
rate sensing, internet access, and cloud-based services
(Debauche et al., 2020; Devagiri et al., 2022; Singh et al.,
2020). The first stage is automated data collecting using
accurate sensors throughout the industry. All data is
transferred to an online storage system in the second
stage. Better connectivity, including fiber optics and 5G
connectivity, improve the precision and speed of this trans-
mission. The third stage delivers current information to
the manager or controller for them to make choices about
processing or packing. Similarly, product history can be
accessible by end users through smart gadgets over the
internet and cloud-based computing. AI’s most useful and
last step is predicting the future based on existing data.
Due to the limited analytical capacity of the human brain,
a virtual storage system with ML can forecast numerous
product characteristics that are beneficial to primary pro-
ducers and end users. A cloud-based AI system is shown
in Figure 7.
Likewise, in poultry production, AI could significantly

reduce the usage of energy, space, workforce, and time
in egg inspection and in processing plants. AI offers real-
time assessment, grading, and other need-based actions.
Currently, AI-assisted equipment identifies surface and
interior flaws in shelled eggs, increasing the production
line speed to 70 eggs/s (Puertas & Vázquez, 2020; Soltani
et al., 2015). AI-assisted egg breakers quickly separate the

egg white from the yolk without leaving any trace behind.
These AI-assisted egg breakers process 200,000 eggs/h, or
∼60 eggs/s, making it impossible for a worker to recog-
nize a problem if it exists. AI can gather and analyze data
utilizing cloud storage. After processing the results, AI
may be used for instantaneous decision-making, thereby
enhancing production line efficiency (Astill et al., 2020;
Ichiura, 2022). For example, robots and sensors may
be programmed to gather data on freshness, humidity,
contamination, and cracks. These results would enable
machines to make separation, classification, and packing
decisions independently. Numerous characteristics, such
as cracks, breakage, weight, yolk quantity, and composi-
tion, would be readily recognized on the monitoring farm
or on a processing line, and then sent to controllers so
that decisions can be taken more quickly (Ma et al., 2017;
Siswantoro et al., 2017; Valencia et al., 2021; Wang, 2014).
Cloud-based storing andMLmay help end users or con-

sumers know an egg’s history from farm to purchasing
stages, using smartphones. The meat processing indus-
try has explored MV technology for categorizing meats
and detecting defective carcasses (Chowdhury & Morey,
2020). Since machines can readily distinguish between
the density of albumen and yolk, processes such as albu-
men separation are ideal for an AI operation (Ma et al.,
2017). AI has been used on layer farms to rapidly ana-
lyze and identify high-quality eggs (Ichiura, 2022). The
MV and intelligent automation have enabled the meat
and egg processing sector to increase the rate of process-
ing and packing (Chowdhury & Morey, 2020; Innocente
et al., 2009;Kamruzzaman, 2023). Spectral imaging devices
driven by AI have been successfully shown to increase in
multiple studies in terms of increased efficiency, improved
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 15

F IGURE 7 An artificial intelligence-based cloud computing system for the smart egg industry: transfer of sensing data into a data
center—machine learning of data and transfer to the consumer using an app server—end-user quality check to help with purchasing decision.

quality control, reduced costs, and enhanced safety
(Debauche et al., 2020; Puertas & Vázquez, 2020; Singh
et al., 2020; Soltani et al., 2015; Wieme et al., 2022).

4 CHALLENGES AND FUTURE
TRENDS

The egg industry will face new challenges to meet the
ever-increasing demand with more stringent safety and
quality standards. To overcome challenges, the egg indus-
try needs to carefully adopt I4.0 technologies. While I4.0
offers numerous advantages and opportunities, several
constraints must be considered specifically for small busi-
nesses for sustainable development. Any technological
development can be called sustainable only if it meets
three basic dimensions (also known as pillars), such as
social sustainability (i.e., improving the quality of life),
economic sustainability (i.e., economic stability), and envi-
ronmental sustainability (i.e., protecting and preserving
the environment) (Yavuz et al., 2023). The three sustain-
ability pillars are interdependent and complementary. Any
of these aspects, if neglected, can jeopardize the sustain-
ability objective (Ghobakhloo, 2020). Industry requires a
holistic approach to ensure a resilient and equitable EI 4.0
that meets the needs of present and future generations.
Considering the existing limitations of the conventional
egg industry, different optical sensing technologies can
improve efficiency, quality, biosecurity and biosafety, and
sustainability, facilitating the transition toward a robust
sector I4.0 system.
CV has been increasingly used for egg sorting due to its

fast, consistent, and precise results. The studies reported
the effectiveness of a CVS for egg classification based
on fertility, cracks, holes, dirt, volume, and yolk content
(Dong et al., 2021; Ma et al., 2017; Siswantoro et al., 2017;
Wang, 2014; Zhu et al., 2022). Therefore, CV has the poten-

tial for auto-grading eggs based on specific parameters.
Nevertheless, there are challenges in the egg industry asso-
ciated with adopting CV despite the growing usage of this
technology in the food and agriculture industries. The CVS
mainly used 2D images, which is insufficient to capture
all variability required for sorting, classifying, and grad-
ing. Depth imaging for 3D construction using two cameras
or depth cameras (e.g., an intel RealSense Depth Camera)
could be used to overcome this limitation. Linear mod-
eling techniques may not be effective enough, requiring
more advanced algorithms for egg sorting. Nonlinear tech-
niques, especially deep learning, have been reported to be
effective for egg sorting with CV using color and textu-
ral features (Valencia et al., 2021). In product lines, eggs
often travel at a relatively rapid speed. Therefore, with CV,
image blurring is another issue. However, this problem can
be solved by high quality illumination, a high speed cam-
era, and other image acquisition techniques. Device and
time dependencies exist in egg classification algorithms
developed using CV techniques. Therefore, more work is
necessary to create device-independent algorithms so the
system can be controlled remotely, even using a smart-
phone. In addition, due to I4.0 technologies such as big
data and cloud computing, it is expected that CV would
have new dimensions like smartphone-based end-user egg
testing.
Spectroscopy is a good tool for identifying the intrinsic

and extrinsic characteristics of eggs. Real-time applica-
tions for determining various quality characteristics from
a small number of essential spectra or even from a sin-
gle spectrum have a significant advantage over existing
techniques, especially the development of affordable hand-
held devices. Recent technological improvements have
reduced the size of spectroscopic instruments, enabling
the development of handheld gadgets and portable sens-
ing systems that enable in situ, real-time monitoring
of crops, food, and egg quality (Brasil et al., 2022;
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16 OPTICAL SENSING FOR EGG INDUSTRY 4.0

Cruz-Tirado et al., 2021; Folli et al., 2022; Freitag et al.,
2022; Xu et al., 2022). Therefore, the use of intelligent
optical sensors has become more popular. Among differ-
ent spectroscopic methods, Vis–NIR and THz have shown
significant effectiveness in egg and eggshell quality deter-
minations. However, despite much progress in ML, some
drawbacks must be overcome to ensure sustainability. For
example, spectroscopy is a secondary technique that pre-
dicts parameters based on reference data obtained using
chemical analyses. Therefore, the inaccuracies of refer-
ence information might lead to improper classification.
Moreover, developing a predictive model requires complex
chemometric analysis to extract the essential information
from a number of multiple variables. Several approaches
for outlier detection, pretreatments, regression analysis,
and informative band selection, require better models.
But there are no current rules or standards for designing
and evaluating multivariate data mining techniques. Since
there is no single formula for selecting a data mining pro-
cedure for a specific application, it needs the right skills to
identify the right chemometrics to create effective models.
In addition, calibration transfer between spectroscopic

devices is another challenge that must be met to ensure
a robust system for I4.0. For example, a model for one
device may not accurately fit with other devices due to
structure and detection mechanism variations. Changes
in type, and intrinsic and extrinsic compositions due to
variations in factors such as breed, feed, and rearing
environment, could lead to inaccuracies in the calibra-
tion model. It is a challenge with present spectroscopic
techniques. However, researchers need to focus on devel-
oping a well-fitting calibration model with self-propelled
adjustment of device-to-device variations with constant
prediction accuracy. This could be possible if one device
can combine all spectroscopic approaches simultaneously.
Besides, online spectral data benchmarking could be con-
sidered to evaluate the methods. Even though researchers
are striving to transfer calibration from one device to
another with the same prediction accuracy, they have not
yet succeeded. Because deep-learning systems do not need
typical samples for transferring algorithms, it is anticipated
that they would offer new opportunities for calibration
transfer (Khademi et al., 2023; Mishra & Passos, 2021;
Xu et al., 2023; Yang et al., 2022). In addition to stan-
dard calibration transfer, automated updating and reliable
maintenance must ensure any spectroscopic approaches
under the umbrella of I4.0.
HSI is being considered for egg analysis because of

features like being rapid, accurate, chemical free, and non-
destructive. However, because of the relatively high cost
and poor industrial environment adaptation, HSI has not
been used extensively in the egg industry. Despite its bene-
fits over conventional techniques, the technology has some

intrinsic limitations like cost, computational speed, hard-
ware, and inconvenience. Computational speed is one of
the most critical bottlenecks with HSI. Furthermore, this
technology requires considerable time for data acquisition,
processing, and visualization of output which hinders its
real-time application. More research on developing high-
speed and real-time HSI is in progress. Another significant
limitation of this technology is the mode of implementa-
tion.MostHSI technologies (see Table 3)were done offline,
while the industry prefers an in-line or online approach for
better inspection and monitoring. It is expected that small
and portable HSI devices with robust algorithms will open
a new door for the optical analysis of biological samples,
including eggs.
AI, IoT, and cloud-computing technologies are fore-

casted to assist in fine-tuning cognitive processes utilizing
networked machines and tools to enhance performance
and optimize time, energy, and the workforce. AI is
now a global paradigm capable of radically transform-
ing any industry with sensing, identification, remotely
control, and industrial automation capabilities. Existing
practices confront various obstacles and complications
that the future AI-based high-tech egg industry can over-
come.However, several obstacles remain in the application
of these concepts. Existing equipment and systems are
incompatible with ensuring a sustainable cloud-based AI
system. For example, massive amounts of heterogeneous
data created by many IoT-connected devices will need
a great deal of memory and processing power (Cioffi
et al., 2020; Mao et al., 2019). Consequently, a robust cen-
tralized storage and processing is needed. Currently, IoT
devices with little or no storage space need centralized
ML for synchronized data processing; hence, a lack of
synchronization may result in inaccurate or no results.
Additionally, due to the limited capacity of IoT devices,
processing takes longer, and in certain instances, even a
tiny delay might have disastrous effects on the system
(Phuyal et al., 2020). To address these issues, the use
of a dynamic network is being proposed (Ismayilov &
Topcuoglu, 2020; Ruuskanen et al., 2021; Yue et al., 2022;
Zhang et al., 2022b). The egg industry needs to emphasize
the generation of quality data, further usage for process-
ing, and the invention of energy-efficient devices and IoT
sensors. Low-cost and energy-efficient dedicated hardware
and platforms for AI are available on a certain scale,
such as the NVIDIA Jetson developer kits. Data filtering,
real-time analysis to minimize cloud or central storage,
application of a pre-defined approach for data sorting, and
freeing up storage space by periodic deletion of older data
can optimize data storage, reduce cost, and improve over-
all performance. However, this area needs to be explored
more to implement a sustainable AI- and IoT-based
CPS.
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OPTICAL SENSING FOR EGG INDUSTRY 4.0 17

The impacts of using AI for one service ahead of another
and one network segment for a particular purpose versus
another must be allocated correctly. For example, collect-
ing and processing raw data and spreading the resultant
information or judgments of AI may raise communica-
tion overhead, resulting in data traffic that causes delays in
various network operations, such as navigation or authen-
tication protocols. Therefore, it is important to explore the
resultant issues in the underlying network architecture
as a consequence of the incorporation of AI techniques
into the communication network infrastructures that the
IoT will use. AI-, IoT-, and cloud-based systems need
device-to-device and end-user communication. Sharing
digital information requires network security at several
points across the system, including universal identity and
end-to-end file encryption (AlAhmad et al., 2021; Sun,
2020). Every network node must be protected against
abuse or cyber threats. Furthermore, malware, invasion,
and data outlier detection should receive greater attention
with all connected devices. Existing limitations on trans-
mission bandwidth, operating frequency, communication
mode, and hardware capabilities, among others, provide
a formidable obstacle to the interoperability of the intelli-
gent cloud-based system (Ahmad et al., 2021). AnAI-, IoT-,
and cloud-based system may become unresponsive, lose
the ability to control it remotely, face cyber security issues,
or completely lose functionality. Therefore, a sustainable
system should consider redundancymeasures, backup sys-
tems, failover mechanisms, and disaster recovery plans to
ensure system resilience and minimize downtime. Exten-
sive research is required to ensure a functional system.
Standards, norms, and models must be established for
successful cloud-based interoperable systems.
The utilization of automated and intelligent technolo-

gies has opened the door to the next level of integration,
generally referred to as the intelligent industry, which
leverages data and information from industry to end-users
through cloud computing. To efficiently apply AI–IoT sys-
tems in EI 4.0, allied technologies like CPS, data mining,
augmented reality, the IoT, and robotics technology must
be used effectively. However, there is a big gap between
such intelligent EI 4.0 and the existing egg production
industry, which provides significant opportunities. AI and
IoT have become significant. The IoT market is seeing
exponential growth, and the IoT sector is anticipated to
increase 10-fold by 2025 (Saha et al., 2022). In the future,
all IoT will be adopted to perform almost all tasks by
automation. Crewless aerial vehicles, swarm robotics, or
automatic guided vehicles (AGV) with self-loading and
unloading capacity are other important prospects. With
the help of ML and cloud computing, remotely controlled
AVG could be used for purposes such as cleaning and
transportation. Vision cameras, radio waves, or lasers for

navigation with IoT technology are other prospects, lead-
ing to a smart egg industry. However, using AI processes
needs a thorough examination of the repercussions with
respect to different benchmarks.
I4.0 is a realistic approach since it increases productivity,

reduces operating and labor costs, and provides accurate
and reliable data for management and planning. However,
a successful transition from the present egg industry to I4.0
must overcome several challenges, such as initial costs, a
lack of flexibility to adapt to the current industrial environ-
ment, and a lack of technical expertise. Despite significant
technological improvements, there are still obstacles to
operating a robust EI 4.0. Challenges include growing digi-
tal inequality, access to energy and other resources, system
standardization, data interoperability, control and security,
and adaptability for small-size egg processing facilities.
Given the focus on creating technological advancements
and digital solutions, and the continuous close coopera-
tion needed between many stakeholders and academics,
the present difficulties are expected to be resolved. Cyber
security is seen as the biggest concern in the I4.0 idea based
on the need for intelligent factories. Smart factoriesmay be
susceptible to vulnerability exploitation, malware, denial
of service, system hacking, and other frequent attacks that
affect other digital systems since every linked component
has a potential risk. Sufficient research innovation and reg-
ular system validation of all interconnected systems are
required to prevent cyberattacks or industrial espionage.
Another important aspect of sustainability for the intel-

ligent industry is skilled operators. Employees must be
qualified to handle the new technology concepts and have
good work and technical competencies. However, sourc-
ing people with competent skills is a challenge and a
potential obstacle to implementing EI 4.0. As discussed,
calibration transfer and model adaptation in new devices
are still challenges; the industry needs new deep-learning
techniques to overcome these problems. Processing data
from AI devices or sensors requires the development of
new algorithms for effective decisions. Finally, deploy-
ing a high-speed industrial network is necessary for the
interconnectivity and interoperability of the I4.0 systems.
Hopefully, the poultry and egg industries are trying to
replace conventional techniques with different I4.0 or AI
technologies to save time, energy, and cost.However, trans-
formation to I4.0 may not always be sustainable. While
I4.0 offers numerous advantages and opportunities, small
industrial establishments may encounter several obsta-
cles when employing these technologies. Implementing
I4.0 technologies could require a substantial initial invest-
ment. Investing in new equipment, sensors, data analytics
systems, and training may be difficult for small enter-
prises. Costs for ensuring scalable and flexible EI 4.0
systems, including data security and systemmanagement,
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18 OPTICAL SENSING FOR EGG INDUSTRY 4.0

can be a barrier for small enterprises. However, starting
with smaller-scale implementations, collaborating with
business partners, leveraging cloud-based solutions, and
focusing on specific areas that provide themost immediate
benefits, small-size egg processing facilities can gradually
integrate I4.0 technologies and leverage their advantages.
Currently, small and portable I4.0 devices have shown
potential in various applications (Eyvazi et al., 2021;
Harpaz et al., 2022; Lu et al., 2019; McVey et al., 2021). For
example, such portable technologies will increase on-site
or in-line assessment of egg quality parameters. Addition-
ally, it is anticipated that the current AI and deep-learning
boom will contribute to creating more robust algorithms
for accurate and real-time applications of such handheld
devices. Developing smartphone-based apps will provide
significant prospects for remotely controlling automated
systems.

5 CONCLUSIONS

The egg industry has to deal with increased consumer
demand, higher consciousness, introduction of fabricated
eggs, animal welfare, biosecurity, and other contempo-
rary issues. The ongoing COVID-19 pandemic has further
fueled the demand for shell eggs, focusing on differ-
ent quality parameters such as nutritional composition,
including, omega-3 FA content. To meet these demands,
the egg industry needs to adopt I4.0 technologies for the
smart categorization of eggs with higher efficiencies. I4.0
consists of the IoT, industrial IoT (IIoT), cloud computing,
big data analysis, simulation, and cyber security, which
ensures the automation of industrial activities with high
interconnections and blurs the boundary of the physical
world. This review covered the components of I4.0 for
eggs with a special focus on non-invasive optical sens-
ing technologies for fast and accurate egg characterization.
Traditional egg quality determinations and categorizations
practices are tedious, require chemical analysis, and are
destructive. But, different I4.0 technologies, such as opti-
cal sensing devices, are gaining popularity due to being
fast, accurate, chemical free, and most notably because
of their non-destructive or non-invasive nature. The var-
ious studies discussed in this review confirm that HSI or
spectroscopic technique coupled with appropriate mul-
tivariate analysis provides better and faster results than
conventional practices. Despite significant technological
improvement, I4.0 technologies have limitations like cyber
security, network stability, data interpretability, algorithm
transfer, and system control. The existing drawbacks could
be resolved given the focus on smart solutions and the
continuous cooperation between academia and industry.
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