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A B S T R A C T   

Leafy greens are frequently implicated in foodborne disease outbreaks and cut-leafy greens are a food that re-
quires time and temperature control for safety. Predictive microbiology uses mathematical models to predict the 
growth of bacteria based on environmental conditions. The objective of our study was to compare published 
square root growth models for Salmonella (n = 6), pathogenic E. coli (n = 6) and Listeria monocytogenes (n = 4) 
using real world transport temperature data. Data from trucks transporting fresh-cut leafy greens during cross- 
country shipments were used as temperature inputs to the models. Bacterial growth was computed using the 
temperatures from each probe in every truck over the duration of transit, which resulted in 12–18 growth 
predictions per truck for each model. Each model generally gave significantly different predictions than other 
models for the same organism. The exception was for the two Salmonella models predicting the least growth and 
the two Salmonella models predicting the most growth which gave predictions that were not significantly 
different. Although different models tended to give different predictions, their ability to rank risk by truck was 
generally consistent across models. While absolute risk might be dependent upon choice of model, relative risk is 
independent of model choice.   

1. Introduction 

Leafy greens are frequently implicated in foodborne disease out-
breaks. The US Food and Drug Administration (FDA) list of outbreak 
investigations shows multiple outbreaks every year associated with 
some type of leafy greens (Center for Food Safety and Applied Nutrition, 
2022). Confirmed single etiology outbreaks linked to leafy greens re-
ported that Norovirus was most commonly implicated followed by 
Escherichia coli O157:H7 and Salmonella (Herman et al., 2015). Listeria 
monocytogenes has also been linked to leafy greens recalls with several 
recent outbreaks (Center for Food Safety and Applied Nutrition, 2022; 
US Food and Drug Administration, 2016). L. monocytogenes is particu-
larly concerning because it can grow even at commonly accepted 
appropriate refrigerated temperatures (Walker et al., 1990). 

Leafy greens can become contaminated with pathogens by a variety 
of means including contaminated irrigation water, improperly com-
posted manure used for fertilizer, and by the feces of animals. 

Contamination can occur also during processing, including washing, 
cutting and storage (Herman et al., 2015). Refrigeration at 5 ◦C or less 
will prevent the growth of Salmonella and pathogenic E. coli that may be 
present on leafy greens (Abdul-Raouf et al., 1993; Koseki and Isobe, 
2005; US Food and Drug Administration, 2016) and will restrict the 
growth of L. monocytogenes also. Storage of leafy greens at 5 ◦C or above 
may allow pathogens to multiply, increasing the risk of foodborne dis-
ease (Li et al., 2001). The FDA Model Food Code identifies cut-leafy 
greens as a food that requires time and temperature control for safety 
(US Food and Drug Administration, 2000). The need for temperature 
control includes control during the shipment of fresh-cut leafy greens by 
tractor trailers or other means. If the tractor trailer loads are subjected to 
temperature above 5 ◦C, they may be rejected by distribution centers or 
wholesale markets on arrival (Cantwell and Suslow, 2002; Chang and 
Fang, 2007; Franz et al., 2010; Kim et al., 2008; Sant’Ana et al., 2012). 
Temperature must be controlled carefully, however temperatures below 
~0 ◦C can lead to damage of plant tissues by freezing. This freezing will 
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lead to quality loss and a potential for greater subsequent microbial 
growth in the damaged tissue after the temperature rises again (Courcol 
et al., 1982). 

Predictive microbiology uses mathematical models to predict the 
growth of bacteria based on environmental conditions (Ross and 
McMeekin, 2003). Multiple growth models have been developed to 
predict the growth of Salmonella spp. (Gibson et al., 1988; Koseki and 
Isobe, 2005; Mishra et al., 2017; Puerta-Gomez et al., 2013; Sant’Ana 
et al., 2013; 2012; Veys et al., 2016), E. coli O157:H7 (Buchanan et al., 
1993; Danyluk and Schaffner, 2011; Koseki and Isobe, 2005; McKellar 
and Delaquis, 2011; Puerta-Gomez et al., 2013; Veys et al., 2016), and 
L. monocytogenes (Buchanan and Phillips, 1990; Koseki and Isobe, 2005; 
Mishra et al., 2017; Sant’Ana et al., 2013; 2012) in leafy greens. 

Despite the wide availability of predictive models, many of which are 
substrate specific, the literature offers very little guidance on methods to 
compare and select the appropriate model from amongst a list of 
potentially valid choices using real world temperature datasets. The 
objective of our study was to compare the pathogen growth models cited 
above using the temperatures recorded during transportation of fresh- 
cut leafy greens. The outcome can improve risk analysis by indicating 
which models are more (or less) conservative for each of the three 
bacteria. 

2. Material and methods 

2.1. Temperature data 

Transport temperature data from trucks containing fresh-cut leafy 
greens during cross-country shipment as reported Brown et al. (2016) 
were provided by those authors. Briefly, temperature probes were 
placed at numerous locations within fresh-cut leafy green transport 
trucks originating from Salinas, California and Yuma, Arizona. A total of 
16 shipments were monitored throughout 2010 and 2011, and sensors 
recorded temperatures at intervals that did not exceed 5 min, for a total 
of 213,280 data points. Each truck had between 12 and 18 sensors, and 
the sensor probe positions varied by truck. Sensors were placed in the 
front, middle and rear of each trailer, with two locations monitored at 
each position. Sensors were also placed on each sidewall next to each 
monitored position. Additional sensors at the middle center were also 
used for some shipments. Brown et al. (2016) indicate the temperatures 
were recorded using Temptale 4 programmable temperature loggers 
(Sensitech, Beverly MA). According to Sensitech (https://www.sen 
sitech.com/en/products/monitors/conventional/), the sensors are ac-
curate to ± 0.55C. For the purposes of this study, the recorded 

temperatures were used without any corrections for accuracy. 

2.2. Models 

Bacteria growth was modeled using the square root or Ratkowsky 
growth model (Ratkowsky et al., 1982), which has the form ̅̅̅μ√

= b(T −

T0), using parameters appropriate for each bacterium. The model 
computes the common log change of colony forming units (CFU), where 
T is the temperature in degrees Celsius (◦C) and T0 is a model specific 
minimum temperature parameter in ◦C. The parameter b is the empir-
ically derived regression coefficient of the temperature on the square 
root of the growth rate (Ratkowsky et al., 1982). 

Relevant growth model parameters T0 and b were selected from the 
literature for Salmonella, E. coli O157:H7, and L. monocytogenes. Six 
Salmonella models, six E. coli O157:H7 models, and four 
L. monocytogenes models were identified. Lag time models were not used 
in this analysis. Models were selected based on their substrate (i.e., leafy 
greens), although one traditional broth model from the early literature 
was included for each species (Supplemental Table 1). 

Supplemental Table 1 shows that the number of strains ranged from 
only a single strain to one model which analyzed data from 17 different 
studies. The substrates used to create the model tended to be predomi-
nantly leafy greens although some of the models were developed with 
sterile laboratory media. The predominant primary model used was the 
Baranyi model but, some of the earlier literature use the Gompertz 
model and several papers used the three-phase linear model. Supple-
mental Fig. 1 provides a visualization of the square root model param-
eters from Table 1. It’s clear from Supplemental Fig. 1 that the 
L. monocytogenes models tend to have lower T0 values as might be ex-
pected given the psychotropic nature of the organism. The other pattern 
that is apparent is that the models developed in broth tend to cluster 
towards the right-hand portion of the graph indicating that these models 
are more conservative (predict higher growth) since they tend to have 
higher b parameters (faster increase in growth rate with increasing 
temperature). 

Some calculations were performed to standardize the parameters 
into the same units. Two models that used natural logarithms instead of 
common (base-10) logarithms in their original sources, had the given 
parameter b divided by the square root of the natural log of 10, or b/ 
1.5174, to convert b into common logarithm units (details in the ap-
pendix). For the two models where the parameter b was not given in 
square root units, the square root of b was used to convert it for com-
parison with the other models. One model reported its parameter b for 
daily (instead of hourly) logarithmic growth. To compare with the other 

Table 1 
A summary of temperature probe data from 16 trucks shipping fresh-cut leafy greens during cross-country shipment collected by Brown et al. (2016).  

Truck Number Probe Temperature (◦C) Number of Observations 

Minimum Maximum Mean Standard Deviation Median 

1 1.50 a 7.94 3.59 1.21 3.28 16,737 
2 0.56 5.44 2.71 0.61 2.67 30,201 
3 0.61 7.50 2.44 0.95 2.33 21,920 
4 − 0.28 7.61 2.06 0.96 2.06 19,824 
5 0.78 9.67 3.03 1.43 2.72 18,630 
6 0.61 6.17 2.32 0.54 2.33 15,646 
7 − 0.22 7.33 1.83 0.88 1.83 23,236 
8 − 0.72 5.17 b 1.66 0.95 1.61 26,883 
9 − 1.22 7.06 0.90 1.16 0.61 27,559 
10 0.50 5.67 2.61 0.95 2.61 17,242 
11 0.56 6.50 2.62 0.48 2.61 24,840 
12 0.83 7.17 2.50 0.58 2.50 14,112 
13 0.50 6.50 2.22 0.60 2.17 14,256 
14 − 2.39 6.78 2.21 1.09 2.17 24,210 
15 − 0.78 8.56 1.63 1.00 1.50 9504 
16 − 0.83 5.17 1.53 1.01 1.72 7480  

a Highest values within a column are bolded and underlined. 
b Lowest values within a column are italicized and underlined. 
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models, this parameter was divided by √24. A comparison of the pre-
dictions using both the transformed and untransformed parameters 
confirmed identical predictions. Use of the transformed parameters fa-
cilitates comparison between models. 

Temperature data from each probe in each truck was used as inputs 

to each growth models. The incremental growth for each time interval 
was calculated for each model for each truck where the time interval was 
5 min. When a temperature of less than the model T0 was encountered, 
the predicted growth for that time interval was set to a 0 log CFU in-
crease. Growth was computed using the temperatures from each probe 
in every truck over the duration of transit, which resulted in 12–18 
growth predictions per truck for each model. 

2.3. Data analysis 

The predicted log CFU increases results were compared statistically 
using the R statistical software package (R Core Team, 2021) and the 
data science package TidyVerse (Wickham et al., 2019). The predicted 
growth at each probe location within a truck and across all trucks for 
each model were used to calculate means and maxima. Predicted in-
creases in pathogen concentration by truck for different models as well 
as predicted increases in pathogen concentration across all trucks for 
different models were calculated. 

The Shapiro-Wilk normality test (Shapiro and Wilk, 1965) revealed a 
lack of normality when the models were separated into categories by 
bacteria. Differences in the multiple models within each category, were 
therefore detected using Friedman’s test (Friedman, 1937), a nonpara-
metric, one-way, repeated measures Analysis of Variance (ANOVA). A 
significant Friedman test was followed up by pairwise Wilcoxon 
signed-rank tests (Wilcoxon, 1945) to identifying which groups were 
different. We used the Bonferroni correction (Bland and Altman, 1995) 
to compensate for any increase in Type I errors. Kendall’s W determined 
the effect size to assess agreement among the models (Kendall and 
Smith, 1939) ranging from zero (no trucks have a consistent ranking 
across models), to one (all trucks have a consist ranking across models). 

Table 2 
Standardized square root model parameters for Salmonella, E. coli O157:H7 and 
L. monocytogenes from the published literature. Values are given using the same 
number of significant figures as reported in the original publication. Highest 
values within an organism within a column are bolded and underlined. Lowest 
values within an organism, within a column are italicized and underlined.  

Organism Square root model parameters 
a 

Source 

b T0 (◦C) 

S. typhymurium 0.0172 b 5.88 Puerta-Gomez et al. (2013) 
Salmonella 0.037 6.27 Gibson et al. (1988) 
Salmonella spp. 0.027 5.42 Veys et al. (2016) 
Salmonella spp. 0.033 4.96 Koseki and Isobe (2005) 
S. enterica 0.0132 c − 0.571 Mishra et al. (2017) 
S. enterica 0.0178 − 4.6 Sant’Ana et al. (2013) 
E. coli O157:H7 0.0246 b 4.76 Puerta-Gomez et al. (2013) 
E. coli O157:H7 0.0126 d 2.628 Danyluk and Schaffner (2011) 
E. coli O157:H7 0.033 4.45 Koseki and Isobe (2005) 
E. coli O157:H7 0.032 2.67 Buchanan et al. (1993) 
E. coli O157:H7 0.023 1.2 McKellar and Delaquis (2011) 
E. coli O157:H7 0.028 1.58 Veys et al. (2016) 
L. monocytogenes 0.0152 c 0.599 Mishra et al. (2017) 
L. monocytogenes 0.0144 − 1.6 Sant’Ana et al. (2013) 
L. monocytogenes 0.027 − 0.44 Buchanan and Phillips (1990) 
L. monocytogenes 0.016 − 4.26 Koseki and Isobe (2005)  

a Significant figures are reported as per the original published manuscript. 
b Converted from the published parameter by taking the square root. 
c Converted from originally stated parameter in natural logarithm to common 

logarithm. 
d Converted from originally stated parameter in log CFU/day to log CFU/hour. 

Fig. 1. Predicted increases in Salmonella concentration by truck for 6 different models: (A) Puerta-Gomez et al. (2013); (B) Gibson et al. (1988); (C) Veys et al. 
(2016); (D) Koseki and Isobe (2005); (E) Mishra et al. (2017); and (F) Sant’Ana et al. (2013). 
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3. Results and discussion 

3.1. Temperature observations 

As shown in Table 1, Truck 1 contained probes that recorded the 
highest minimum temperature (1.5 ◦C), the highest mean temperature 
(3.59 ◦C), and the highest median temperature (3.28 ◦C) across all 16 
trucks. Truck 2 had the greatest number of observations (>30,000). 
Truck 5 contained probes which reported the maximum temperature 
(9.67 ◦C), as well as the greatest standard deviation (1.43 ◦C), across all 
16 trucks. Trucks 8 and 16 contained probes which reported the lowest 
maximum temperature (5.17 ◦C), while truck 9 reported the lowest 
mean temperature (0.90 ◦C), as well as the lowest median temperature 
(0.61 ◦C) of all 16 trucks. Truck 11 had probes which recorded the 
smallest standard deviation of any of the 16 trucks (0.48 ◦C). Truck 14 
contained a probe which reported the lowest minimum temperature of 
all 16 trucks (− 2.39 ◦C). Truck 16 had the smallest total number of 
observations (<7500). 

3.2. Model parameters 

As seen in Table 2, amongst the Salmonella models Gibson et al. 
(1988), had the highest values for b and T0, while Mishra et al. (2017) 
had the lowest value for b and Sant’Ana et al. (2013) had the lowest 
value for T0. Amongst the E. coli O157:H7 models Koseki and Isobe 
(2005) reported the highest b value and Puerta-Gomez et al. (2013) the 
highest T0, while Danyluk and Schaffner (2011) and McKellar and 
Delaquis (2011) had the lowest of the same, respectively. Amongst the L. 
monocytogenes models Buchanan and Phillips (1990) had the highest b, 
and Mishra et al. (2017) the highest T0. Sant’Ana et al. (2013) had the 
lowest b, while Koseki and Isobe (2005) reported the lowest T0. 

3.3. Salmonella spp. models 

The predicted increases in Salmonella concentration by truck for six 
different models (Gibson et al., 1988; Koseki and Isobe, 2005; Mishra 
et al., 2017; Puerta-Gomez et al., 2013; Sant’Ana et al., 2013; Veys et al., 
2016) are shown in Fig. 1. The models shown in panels A–D (Puer-
ta-Gomez et al., 2013; Gibson et al., 1988; Veys et al., 2016; and Koseki 

and Isobe, 2005 respectively) all have very low mean predicted growth, 
with most trucks essentially showing no increase. Truck 5 shows the 
most predicted growth across all trucks for these four models ranging 
from 0.07 to 0.50 log CFU. The predictions for the Mishra et al. model 
(Fig. 1E) show modest growth across most trucks, with a maximum 
predicted increase of less than 0.5 log CFU. The Sant’Ana et al. model 
predictions are by far the greatest, and most trucks show at least 0.5 log 
CFU increase, and every truck shows some increase. As with the other 
models, the greatest growth is predicted in truck 5 which shows a 
maximum increase of 2.5 log CFU. It is interesting to note that despite 
this one prediction for truck 5, there are several other trucks that have 
higher average log increases, since these trucks have more sensors that 
are on average warmer than the sensors in truck 5. 

The Friedman test for average growth for each truck confirms that 
the models predict different levels of growth in different trucks (p <
0.0001) i.e., different trucks are different within a model. The Kendall W 
effect size is 0.95, which indicates the ranking of trucks by models is 
quite consistent, in other words the worst truck is always the worst truck 
no matter the model. 

Fig. 2 shows the model predictions grouped by model across all 
trucks, and shows the same trends observed in Fig. 1. The two models 
predicting the least growth (Gibson et al. and Puerta-Gomez et al.) and 
the two models predicting the most growth (Mishra et al. and Sant’Ana 
et al.) are not significantly different from one another. The other two 
models (Veys et al. and Koseki and Isobe) are significantly different from 
one another and are also significantly different from the two models 

Fig. 2. Predicted increases in Salmonella concentration across all trucks for 6 
different models: Puerta-Gomez et al. (2013); Gibson et al. (1988); Veys et al. 
(2016); Koseki and Isobe (2005); Mishra et al. (2017); and Sant’Ana 
et al. (2013). 

Table 3 
Evaluation of different mathematical models for the prediction of Salmonella 
spp., E. coli O157:H7 and L. monocytogenes growth in leafy greens based on data 
collected in 16 trucks using pairwise Wilcoxon signed-rank tests with Bonferroni 
correction.  

Pathogen Source Predicted growth in 16 trucks (log CFU) 

Mean a Standard 
deviation 

Maximum 
b 

Salmonella Puerta-Gomez et al. 
(2013) 

0.0003 
A 

0.0034 0.0689 

Gibson et al. (1988) 0.0009 
A 

0.0109 0.2234 

Veys et al. (2016) 0.0012 
B 

0.0123 0.2437 

Koseki and Isobe 
(2005) 

0.0033 
C 

0.0257 0.4977 

Mishra et al. (2017) 0.1022 
D 

0.0684 0.6322 

Sant’Ana et al. 
(2013) 

1.0754 
D 

0.3338 2.5189 

E. coli O157:H7 Puerta-Gomez et al. 
(2013) 

0.0019 
A 

0.0164 0.3128 

Danyluk and 
Schaffner (2011) 

0.0040 
B 

0.0151 0.2234 

Koseki and Isobe 
(2005) 

0.0061 
C 

0.0363 0.6732 

Buchanan et al. 
(1993) 

0.0509 
D 

0.0959 1.4240 

McKellar and 
Delaquis (2011) 

0.0924 
E 

0.1040 1.2039 

Veys et al. (2016) 0.1149 
F 

0.1286 1.5880 

L. monocytogenes Mishra et al. (2017) 0.0592 
A 

0.0588 0.6208 

Sant’Ana et al. 
(2013) 

0.2167 
B 

0.1106 0.9498 

Buchanan and 
Phillips (1990) 

0.5822 
C 

0.2749 2.5713 

Koseki and Isobe 
(2005) 

0.7578 
D 

0.2521 1.9255  

a Superscripts within a pathogen grouping indicate a statistically significant 
difference in the mean predicted pathogen growth in 16 trucks. 

b The maximum predicted increase observed amongst all probe locations and 
trucks for the specific model. 
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predicting the least growth and the two predicting the most growth. 
These data are summarized in Table 3, where predicted mean growth 
values sharing the same capital letter within a microorganism indicate 
no significant difference, while a different letter indicates statistically 
significant difference (p < 0.001). Ranking the models by increasing 
mean predictions corresponds with ranking the model by maximum 
predicted growth as well, where predictions from Puerta-Gomez et al. 
result in the lowest maximum and Sant’Ana et al. the highest. 

As seen in Table 2, all six models use a parameter b with similar 
magnitude (0.0132 ≤ b ≤ 0.033). However, the two models with the 
most predicted growth use much lower values for the minimum tem-
perature (T0) parameter than the remaining four models. The Sant’Ana 
et al. model uses − 4.6 ◦C as the minimum temperature that Salmonella 
can grow, which is about 4 ◦C lower than the Mishra et al. model, and 
the Mishra et al. model uses − 0.571 ◦C, which is about 5 ◦C lower than 
the remaining four models. Both of these models assume minimum 
temperature (T0) parameter well below the commonly accepted limit for 
Salmonella growth of 5.2 ◦C (National Advisory Committee on Micro-
biological Criteria for Foods, 2010). The Mishra et al. and the Sant’Ana 
et al. models are much more fail-safe (i.e., predicted more growth) than 
the other four models, which have minimum temperatures more 
consistent with this commonly accepted minimum. 

3.4. Escherichia coli O157:H7 models 

When probe temperatures from the 16 trucks were used as inputs to 
the six E. coli O157:H7 models (Buchanan and Phillips, 1990; Danyluk 
and Schaffner, 2011; Koseki and Isobe, 2005; McKellar and Delaquis, 
2011; Puerta-Gomez et al., 2013; Veys et al., 2016), the log growth 
predictions for each truck are shown in Fig. 3. The graphs are arranged 
(Fig. 3A–F) by model in order of increasing predicted mean logarithmic 
growth. Truck 5 shows consistently greater predicted growth than the 
other trucks as seen with the Salmonella models. Although the Danyluk 
and Schaffner model (Fig. 3B) predicts the least amount of growth for 

truck 5, the lowest overall predicted mean log growth across all trucks is 
given by the Puerta-Gomez et al. model. 

Table 3 shows the mean and maximum predicted logarithmic growth 
for each E. coli model. The results of the pairwise Wilcoxon signed-rank 
tests with Bonferroni correction indicate each model gives a distinct 

Fig. 3. Predicted increases in E. coli O157:H7 concentration by truck for 6 different models: (A) Puerta-Gomez et al. (2013); (B) Danyluk and Schaffner (2011); (C) 
Koseki and Isobe (2005); (D) Buchanan and Phillips (1990); (E) McKellar and Delaquis (2011); and (F) Veys et al. (2016). 

Fig. 4. Predicted increases in E. coli O157:H7 concentration across all trucks for 
6 different models: Puerta-Gomez et al. (2013); Danyluk and Schaffner (2011); 
Koseki and Isobe (2005); Buchanan and Phillips (1990); McKellar and Delaquis 
(2011); and Veys et al. (2016). 
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prediction. Each of the six E. coli models gives statistically significantly 
different results from every other model (p < 0.001), as shown by the 
different letters in Table 3. 

The Friedman test on the average growth predicted for each truck 
supports the observation in Table 3 that the E. coli models predict 
significantly different mean log growth across the 16 trucks (p <
0.0001). The Kendall W effect size for the E. coli models is 0.95, which 
indicates the ranking of the models is quite strong, almost the same as 
the Salmonella models (differing at the 3rd decimal place). Fig. 4 com-
pares the E. coli model predictions across all trucks, and compliments the 
data in Table 3, with the McKellar and Delaquis and Veys et al. models 
predict more growth than the other four models, with the maximum 
single greatest growth seen for one location with the Veys et al. model 
(1.59 log increase), followed by the Buchanan et al. model (1.42 log 
increase). As shown in Fig. 4, there are a few probes locations with >1 
log CFU predicted growth for the three models with the highest pre-
dictions (Buchanan et al., 1993; McKellar and Delaquis, 2011; Veys 
et al., 2016), but even these most liberal models generally show less than 
a one large increase. The three more conservative models (Puer-
ta-Gomez et al., 2013; Danyluk and Schaffner, 2011; Koseki and Isobe, 
2005) almost always show less than a 0.5 log increase. 

3.5. Listeria monocytogenes models 

When temperature sensor data from the 16 trucks were analyzed 
using the four L. monocytogenes models (Buchanan and Phillips, 1990; 
Koseki and Isobe, 2005; Mishra et al., 2017; Sant’Ana et al., 2013), the 
results by model (Panel A–D) and by truck are shown in Fig. 5, while 
Fig. 6 compares the models aggregating all trucks. The Friedman test on 
the average growth for each truck (data not shown) supports the data in 

Fig. 5. Predicted increases in Listeria monocytogenes concentration by truck for 4 different models: (A) Mishra et al. (2017); (B) Sant’Ana et al. (2013); (C) Buchanan 
and Phillips (1990) and (D) Koseki and Isobe (2005). 

Fig. 6. Predicted increases in Listeria monocytogenes concentration across all 
trucks for 4 different models: Mishra et al. (2017); Sant’Ana et al. (2013); 
Buchanan and Phillips (1990) and Koseki and Isobe (2005). 
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Table 3 (which uses pairwise Wilcoxon signed-rank tests with Bonfer-
roni correction) indicating that each of the four models predicts signif-
icantly different growth that each of the other models (p < 0.0001). The 
Kendall W effect size is 0.97, which indicates the relationship of the 
trucks across the models is even a bit more consistent than models for 
the other two organisms. 

There appear to be clear differences between each of four models as 
seen in Figs. 5 and 6 as well as Table 3. As shown in Table 1, the slope 
parameter (b) for three models (Mishra et al. Sant’Ana et al. and Koseki 
and Isobe models) are similar (0.0152, 0.0144, and 0.016, respectively). 
The Mishra et al. model has the highest minimum temperature 
(0.599 ◦C) and predicts the least growth while Koseki and Isobe, with the 
lowest minimum temperature predicts the most growth. The Sant’Ana 
et al. and Buchanan and Phillips models do not follow this pattern. The 
Buchanan and Phillips model has the highest slope value (0.027) which 
offsets its minimum temperature (− 0.44 ◦C), while the Sant’Ana et al. 
model has the lowest slope (0.0144) and an intermediate minimum 
temperature (− 1.6 ◦C). 

4. Conclusion 

Our results show that for the 16 models analyzed, model predictions 
for a given organism tended to be significantly different than predictions 
from other models for the same organism. This means that if models are 
to be used for predicting the absolute level of risk (i.e., a specific log 
increase), then model choice is of critical importance. We observed that 
the temperature minimum parameter of the square root model (T0) 
tended to be quite important in the overall model predictions. Models 

with lower minimum temperature parameters generally predicted 
higher levels of increase. This is not surprising given the real-world data 
sets used as inputs to the model. Since temperature control of perishable 
foods tends to be generally good, models that predict growth at lower 
conditions will tend to predict more growth than models which do not 
predict growth at lower temperature conditions. The b parameter for the 
square root model which influences the growth rate of the organism 
above the temperature minimum tended to be of lesser importance, 
which is also consistent with the choice of the real world dataset used to 
make the model predictions. Despite these important differences be-
tween models, our analysis also shows that the ability of different 
models to rank different shipping conditions (e.g., trucks) was generally 
quite consistent. This means if the objective is to identify riskier con-
ditions relative to one another the choice of the specific model is less 
important. Future research should continue to examine these implica-
tions using real world data sets to determine the suitability of models for 
predicting absolute and relative risk. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.fm.2023.104338. 

AppendixNatural Logarithm to Common Logarithm 

Compute the slope parameter b of a model given in natural logarithms (base e, which is Euler’s number, and often abbreviated as “ln”) to common 
logarithms (base 10). 

Given the equation ̅̅̅μ√
= , square both sides to get μ = (b(T − T0))

2 where the slope b is in natural logarithms per hour. Then e(b(T− T0))
2
=

10(x(T− T0))
2
, and solve for x to get the slope in common logarithms per hour. 

Take the natural log of both sides, which gives (b(T − T0))
2
= ((x(T − T0))

2
) ∗ ln(10). 

Algebraically, (b(T− T0))
2

ln(10) = ((x(T − T0))
2
). 

b2

ln(10)
= x2  

x=
b

̅̅̅̅̅̅̅̅̅̅̅̅̅
ln(10)

√ ≈
b

1.5174 

Hence for each b with units in natural logarithms, divide the b by 
̅̅̅̅̅̅̅̅̅̅̅̅̅
ln(10)

√
to get the b in units of base-10 logarithms. 
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