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Abstract: Food-borne pathogens and their toxins cause significant health problems in humans.
Formation of biogenic amines (BAs) produced by microbial decarboxylation of amino acids in
food is undesirable because it can induce toxic effects in consumers. Therefore, it is crucial to
investigate the effects of natural additives with high bioactivity like spice extracts to inhibit the
growth of these bacteria and the formation of BAs in food. In the present study, the antibacterial
effects of diethyl ether spice (sumac, cumin, black pepper, and red pepper) extracts at doses of
1% (w/v) on Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative
(Klebsiella pneumoniae, Pseudomonas aeruginosa, Campylobacter jejuni, Aeromonas hydrophila, Salmonella
Paratyphi A, and Yersinia enterocolitica) food-borne pathogen bacterial strains (FBP) were established.
In addition, the accumulation of ammonia (AMN), trimethylamine (TMA), and biogenic amines
(BAs) in tyrosine decarboxylase broth (TDB) was investigated by using high performance liquid
chromatography (HPLC). Sumac extract exhibited the highest antibacterial potential against all FBPs,
followed by cumin and peppers. AMN (570.71 mg/L) and TMA (53.66 mg/L) production were
strongly inhibited by sumac extract in the levels of 55.10 mg/L for Y. enterocolitica and 2.76 mg/L
for A. hydrophila, respectively. With the exception of S. aureus, black pepper dramatically reduced
the synthesis of putrescine, serotonin, dopamine, and agmatine by FBP especially for Gram-negative
ones. Furthermore, sumac extracts inhibited histamine and tyramine production by the majority of
FBP. This research suggests the application of sumac extracts as natural preservatives for inhibiting
the growth of FBPs and limiting the production of AMN, TMA, and BAs.

Keywords: biogenic amine; food pathogenic bacteria; inhibition; spice; food safety

1. Introduction

Due to a rise in the cases of food poisoning-related mortality, there has been a growing
global demand for safe food. Food-borne pathogens (FBPs) are known to spread disease
through infection, and they can also produce toxins that result in food poisoning. Gram-
positive and Gram-negative bacteria are the primary cause of most illnesses and fatalities [1].
Most food-borne illness outbreaks that have been documented are linked to well-known
organisms, including Salmonella, Campylobacter, Norovirus, Listeria monocytogenes, and
Escherichia coli that produces Shiga toxin. Staphylococcus aureus, Clostridium species, Bacillus
cereus, Yersinia enterocolitica, parasites, and other pathogens have also been shown to
cause diseases on occasion [2]. Biogenic amine-related toxins have become a significant
concern due to their potential to be poisonous and carcinogenic, as well as to trigger
headaches, dizziness, and heart palpitations [3]. As a result of the activities of microbes
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during processes of decarboxylation, transamination, reducing amination, and compound
degradation, poisonous nitrogenous chemicals called biological amines are produced [4].
Consequently, biogenic amines (BAs) are frequently used as a sign of the quality and safety
of food.

Histamine and tyramine, the two main BAs found in foods, are among the most
hazardous and extensively studied amines [4]. A strict monitoring system and regulatory
limits have been established at various levels for histamine and tyramine BAs, taking into
account the variations in foods and processing methods. It is known that the other BAs have
a synergistic effect on raising the harmfulness of histamine and tyramine [2]. Therefore,
different approaches to prevent or manage the concentration of BAs are required to enhance
food safety and quality as well as human health [5]. Many practices have been approved for
lower BAs, including the following: using food additives or bioactive compounds (phenolic
or terpenoids), using multiple starter cultures during the fermentation process, gamma
irradiation, cold storage temperatures, high-hydrostatic pressure processing (HHP), food
packaging procedures, and so on [6,7]. There has been a growing interest among consumers
in clean label foods, which are the foods preserved using natural antimicrobials [8]. Due to
their high antioxidative and antibacterial activity, spices are among the most commonly
used natural antimicrobials for food preservation.

Spices are made from various plant parts, including roots, rhizomes, stem bark, leaves,
fruits, flowers, and seeds [9,10]. Foods are often flavored and colored with spices [11].
In most cases, spices are sold powdered, making them vulnerable to food fraud [12]. It
has been reported that many unbranded spices readily available in the markets contain
synthetic dyes; therefore, they pose a health risk to humans [13]. As an alternative to their
powdered form, extracts of spices have often been used to formulate foods. In this respect,
various extraction solvents are used; however, they have an impact on the bioactivity of the
extracts. Spice extracts have gained a lot of attention due to their wide range of bioactivities
and are generally recognized as safe (GRAS). However, there is currently little research on
how spice extracts affect the synthesis of bacterial biogenic amines in various mediums. The
presence of biogenic amines can be detected by using a variety of media. Using different
types of media for detecting biogenic amines has its advantages and disadvantages. For
example, agar plates provide a simple and cost-effective method, but they may have
limited sensitivity. On the other hand, liquid media offer higher sensitivity, but they can
be more time-consuming and require specialized equipment for analysis. In this respect,
different broths have been used to count bacteria that produce amines to determine the
presence of BAs. Furthermore, an accumulation of amines is found to be greater in Tyrosine
decarboxylase broth (TDB) [14–16]. Therefore, the present study aims at assessing the
effects of diethyl ether-extracted spice extract on the growth and generation of biogenic
amines by Gram-positive (Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC
29212) and Gram-negative (Klebsiella pneumoniae ATCC 700603, Pseudomonas aeruginosa
ATCC 27853, Campylobacter jejuni ATCC 33560, Aeromonas hydrophila NCIMB1135, Salmonella
Paratyphi A NCTC13, and Yersinia enterocolitica NCTC 11175) food-borne bacteria.

2. Materials and Methods
2.1. Spices, Chemicals, and Cultural Media

A total of four different dried spices identified based on their botanical names were
used in this study: sumac (Rhus coriaria L.), cumin (Cuminum cyminum L.), black pepper
(Piper nigrum), and red pepper (Capsicum annuum). All these spices were acquired from
a local market in Adana, Turkey. The spices were ground and dried. The compounds of
diethyl ether, active carbon, tyrosine, peptone, Lab-Lemco powder, NaCl, pyridoxal–HCl,
trimethylamine hydrochloride, ammonium chloride were obtained from Merck (Darmstadt,
Germany) and Sigma-Aldrich (Seelze, Germany). Biogenic amines standards, e.g., his-
tamine dihydrochloride, tyramine hydrochloride, tryptamine hydrochloride, putrescine
dihydrochloride, 2-phenylethylamine hydrochloride, cadaverine dihydrochloride, sper-
midine trihydrochloride, spermine tetrahydrochloride, 5-hydroxytryptamine (serotonin),
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3-hydroxytyramine hydrochloride (dopamine), agmatine sulphate, trichloroacetic acid,
benzoyl chloride, acetonitrile NaOH, were acquired from Merck (Darmstadt, Germany)
and Sigma-Aldrich (Seelze, Germany). All of them were of analytical reagent quality.
Culture media, e.g., nutrient broth and plate count agar (PCA), were purchased from Merck
(Darmstadt, Germany), and Biokar (Beauvais, France) Difco, respectively.

2.2. Bacterial Strains

Reference bacterial strains, e.g., Staphylococcus aureus (ATCC 29213), Klebsiella pneu-
moniae (ATCC 700603), Enterococcus faecalis (ATCC 29212), Pseudomonas aeruginosa (ATCC
27853), and Campylobacter jejuni (ATCC 33560) used in this study were obtained from the
American Type Culture Collection (Rockville, MD, USA). Aeromonas hydrophila (NCIMB1135),
Salmonella Paratyphi A (NCTC13), and Yersinia enterocolitica (NCTC 11175) were obtained
from the National Collection of Industrial Food and Marine Bacteria (Aberdeen, UK) and
the National Collection of Type Cultures (London, UK).

2.3. Spice Extraction

The solvent extraction technique was used to extract the spices. An extraction thimble
(30 × 80 mm, Whatman 2810-338, UK) made from cellulose was used to combine 200 g
of powdered spice with 1 L of diethyl ether and carried out in a reflux extractor. The
mixture was then extracted for 4 h at 60 ◦C. Extraction process was carried out twice for
each spice. To remove the color of the extracts, 40 g of activated carbon (Merck, Darmstadt,
Germany) was used to bleach them for 30 min at 60 ◦C after extraction. After the extracts
had been filtered through Whatman No. 1 filter paper (Maidstone, UK), the impurities
were eliminated from the extracts. A rotary evaporator (Heidolph WB 2000, Heidolph
Instruments, Schwabach, Germany) was used to extract the organic solvent. Before further
use, the dried extracts were stored at −20 ◦C and protected from light. In order to carry out
the antibacterial and biogenic amine analyses, the spice extracts were sterilized for 15 min
at room temperature (22 ◦C) in a Telstar Bio IIA biological cabinet (Telstar, Madrid, Spain)
using UV radiation (30 W, 253.7 nm wavelength, 50 cm away from the light source).

2.4. Culture Media and Biogenic Amines (BAs) Extraction

The method outlined by Klausen and Huss [17] was used to measure the synthesis
of ammonia (AMN), trimethylamine (TMA), and BAs by reference to FBP staining, in
tyrosine decarboxylase broth (TDB). Food-borne pathogens were cultured for two or three
days at their ideal growth temperature in nutrient broth. After that, 0.5 mL of each
bacterial culture was added to the TDB for tyrosine decarboxylation over the course of 72 h,
yielding 106 colony-forming units per mL (106 cfu/mL) as measured by the McFarland
cell densitometer (Biosan DEN 1, Riga, Latvia). Spice extracts were added to the TDB at
a concentration of 1% (w/v), following bacterial inoculation. All extracts were tested in
triplicate on the same day for all groups. As a part of the extraction process, five milliliters
of TDB containing food-borne pathogens were divided into separate bottles and then added
with two milliliters of trichloroacetic acid (6%, w/v) in order to extract biogenic amines. A
filter paper with a pore size of 11 m (Schleicher and Schuell, Dassel, Germany) was then
used to filter the extracts; then, they were centrifuged for 10 min at 3000× g. A total of four
milliliters of each bacterial supernatant was collected for the analysis, and the procedure
was carried out in three duplicates.

2.5. Analysis of BA by HPLC after Derivatization

The method outlined by Özogul [18] was followed in order to prepare a standard
amine-mixed aqueous solution containing ammonium chloride, trimethylamine hydrochlo-
ride, and twelve amines. Derivatization of a 100 µL standard amine solution containing
10 mg of each amine per microliter was accomplished by adding 40 mL of 2% (v/v) benzoyl
chloride in acetonitrile and 1 mL of aqueous 2 M NaOH solution. After shaking the solution
for one minute in a vortex mixer, it was allowed to stand at room temperature and shielded
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from light for 20 min. Afterwards, the derivatization was stopped by adding 2 mL of
saturated aqueous NaCl solution. The resultant solution was extracted twice with two
milliliters of diethyl ether. The top layer was then separated, put into sterile sample tubes,
dried with a nitrogen stream, and combined with one milliliter of acetonitrile. The BAs
were separated and quantified by performing triplicate injections of 10 µL of the produced
solution into Shimadzu HPLC equipment (Kyoto, Japan), following the HPLC approach
previously described by Özogul [19]. The samples of extracted bacterial cultures were
prepared in the same manner as those of the standard mixed amine solution, with the
exception that 4 mL of each extracted bacterial culture was replaced with 100 mL of the
standard mixed amine solution during the derivatization procedure.

The method outlined by Özogul [19] was used to determine the concentrations of BAs,
TMA, and AMN. The results were expressed as milligrams of BAs (or TMA and ammonia)
per litter of TDB (mg/L). There was an HPLC apparatus used in this study, which was
a Shimadzu Prominence HPLC unit (Shimadzu, Kyoto, Japan), equipped with an HPLC
ODS Hypersil column, 5 µm (250 × 4.6) mm (Phenomenex, Macclesfield, Cheshire, UK),
an autosampler (SIL 20AC), a column oven (CTO-20AC), a communication bus module
(CBM-20A) featuring a valve unit FCV-11AL, and two binary gradient pumps (Shimadzu
LC-10AT).

2.6. Chromatographic Separation

In order to conduct the chromatographic separation, gradient elutions were performed
using acetonitrile (eluant A) and HPLC grade water (eluant B) at a flow rate of 1.2 mL/min.
The injection volume was 10 µL, and the overall separation time was less than 20 min.
Detection was monitored at 254 nm. Standard curves were created for each amine ranging
from 0 to 50 mg/mL. A correlation coefficient of peak area versus amine standard concen-
trations was computed for each compound following the injection of five duplicates of each
standard solution of amine. The curves for each benzoylated amine showed a correlation
coefficient (r) greater than 0.99.

2.7. Determination of Different Bacterial Growths in Tyrosine Decarboxylase Broth (TDB)

After appropriate dilutions (10−10 CFU/mL) were made of each bacterial culture in
the TDB, 0.1 mL was inoculated in triplicate onto plate count agar (PCA, Merck, Darmstadt,
Germany) plates using a spread plate approach. Following 72 h of incubation at 30 ◦C, the
results were obtained as the logarithm of total viable colony-forming units per milliliter of
broth, log (average standard deviation), and log (CFU/mL).

2.8. Statistical Analysis

The results were calculated using triplicate samples for each spice (per treatment). An
analysis of variance (ANOVA) was performed and Duncan’s multiple range tests were
run on the data when there were significant differences at p < 0.05. Statistical differences
between the control and spice extracts were determined based on pathogen concentrations
and BA contents. All statistical analyses were conducted using SPSS version 19 for Windows
(SPSS Inc., Chicago, IL, USA).

3. Results and Discussions
3.1. Bacterial Growth in Tyrosine Decarboxylase Broth

The results of different food-borne pathogen bacterial growths in TDB are shown
in Figure 1. Due to sumac’s higher antimicrobial activity, sumac extract demonstrated
significant inhibition of both Gram-positive (S. aureus and E. faecalis) and Gram-negative
(K. pneumoniae, P. aeruginosa, C. jejuni, A. hydrophila, S. Paratyphi A, and Y. enterocolitica)
bacteria. The highest inhibition levels were observed for Y. enterocolitica, ranging from
8.61 to 5.05 log (CFU/mL). P. aureginosa was inhibited at similar levels by cumin extract and
sumac extract. Cumin, red pepper, and black pepper extracts also inhibited K. pneumoniae
and E. faecalis at similar levels. For all microorganisms tested, cumin, black pepper, and
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red pepper spice extracts inhibited bacteria below 1.0 log (CFU/mL). Sumac extract was
shown to be effective against several Gram-positive and Gram-negative bacteria in previous
studies [20,21]. The presence of several polyphenolic compounds in sumac was linked to
antibacterial activity [22]. On the other hand, a previous study reported that cumin extract
exhibited lower bactericidal activities [23]. Impacts of drying technique and extraction
solvents on antibacterial activity were earlier discussed, highlighting the role of different
drying techniques (degrading the bioactive compound) and solvents (poor solubility of the
bioactive compound) on the extraction of bioactive compounds responsible for activity [24,25].
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Figure 1. Food-borne pathogen growth in tyrosine decarboxylase broth. a–c indicate significant
differences (p < 0.05) among groups. Spice extracts were added in tyrosine decarboxylase broth at a
concentration of 1% (w/v).

3.2. Ammonia, Trimethylamine and BAs production in Tyrosine Decarboxylase Broth

There are three types of BAs that are present in food. Heterocyclic BAs (histamine
and tryptamine), aliphatic BAs (putrescine and cadaverine), and aromatic BAs (tyramine
and phenylethylamine). A further categorization is based on the quantity of amine groups,
which include polyamines (spermidine and spermine), diamines (histamine, putrescine,
and cadaverine), and monoamines (tyramine and phenylethylamine) [26]. BAs such as
diamines, polyamines, and TMA are detected to monitor the freshness or spoilage rate of
food. The most dangerous amines are histamine and tyramine, which are the two primary
BAs present in food [4]. Inhibitory effects of four spice extracts, e.g., sumac, black pepper,
red pepper, and cumin on the production of ammonia (AMN), trimethylamine (TMA), and
the formed BAs (putrescine, cadaverine, spermidine, tryptamine, phenylethylamine, sper-
mine, serotonin, dopamine, and agmatine) produced by eight food-borne bacteria using
TDB are presented in Table 1. AMN production was between 543 mg/L by A. hydrophila
and 844 mg/L by K. pneumoniae. A significant inhibition of ammonia production was
observed with all spice extracts (>75%), particularly sumac, which inhibited five microbial
strains, e.g., S. aureus (90%), S. Paratyphi A (91%), K. pneumoniae (80%), E. faecalis (87%), and
Y. enterocolitica (92%). There was an 80% inhibition of P. aeruginosa and a 75% inhibition of
C. jejuni by black pepper whereas 89% of inhibition of A. hydrophila by cumin was observed.
The maximum production of cadaverine and putrescin was recorded by S. Paratyphi A
(4.39 mg/L) and C. jejuni (35.49 mg/L). The control sample (without spice extract) had
a generally high level of BAs formation (except for tryptamine and phenylethylamine).
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Extracts of cumin exhibited higher values than control samples. A similar pattern was
observed with putrescine, where sumac extract inhibited five species (>50%) other than
K. pneumoniae (50%), whereas black pepper extract inhibited stronger inhibition for A.
hydrophila (47%) and Y. enterocolitica (90%). The production of cadaverine in all evaluated
microorganisms was most resistant to spice extracts, with the exception of S. Paratyphi A,
for which an inhibition of 60% was observed in the presence of sumac extract. However,
among extracts tested, there was a higher increase in cadaverine production with cumin
extract over control. Sumac extract was the most effective inhibitor of the four spice extracts
evaluated, followed by black pepper and red pepper extracts. Spermidine production
peaked at 90.22 mg/L, primarily generated by E. faecalis. Black pepper extract was found
to be the most effective against spermidine production, inhibiting over 70% of all evalu-
ated microorganisms. Similarly, sumac inhibited spermine production in all samples. In
comparison to other extracts, sumac extract were found to promote serotonin generation in
bacteria (S. aureus, S. Paratyphi A, K. pneumoniae, E. faecalis, and P. aeruginosa). Additionally,
cumin extract promoted serotonin production for all three remaining microorganisms.
The results showed that red pepper extract was effective on inhibition the production of
trimethylamine by A. hydrophila, while black pepper inhibited the formation of trimethy-
lamine by P. aeruginosa, E. faecalis, and S. Paratyphi A. Among all tested microorganisms,
pepper-based extracts significantly retarded dopamine production. Sumac extract inhibited
the production of agmatine by all tested microorganisms with the exception of S. aureus.

Microorganisms secrete endogenous enzymes (amino acid decarboxylase) and ex-
ogenous enzymes for decarboxylation of proteins and amino acids [4]. Cumin extract
intensifies the production of tryptamine, phenylethylamine, and spermidine BAs due to
its synergistic effect with TDB broth in decarboxylating phenylalanine and tryptophan,
thereby producing phenylethylamine and tryptamine. This is the first study to suggest
that spice extract increases BAs production, which could be explained by the abundance
of alkaloid in cumin, because alkaloid content has been associated with increasing BAs
production. [4,27–29]. The sumac extract was the most effective inhibitor, followed by the
black pepper, red pepper, and the cumin extracts. In this study, sumac extract was observed
to suppress BAS production, which could be ascribed to the fact that sumac extract con-
tained 211 different kinds of phytochemicals, such as polyphenols, organic acids (mallic
and tannic acid), and flavonoids [30–34]. Peppers (black and red) were reported to be the
sources of bioactive capsaicin, piperine, flavonoid, amide, and organic acid constituents,
confirming their ability to inhibit biogenic amine production. Several studies show that the
bioactive components in spice extracts are antibacterial, inhibiting the actions of endoge-
nous enzymes, and also targeting Gram-positive and Gram-negative bacteria [8,32,35–39].
However, the antibacterial action led to the inactivation of microorganisms that caused BA
production. In addition, bioactive constituents present in spices were reported to inhibit
enzymatic activities due to their high antioxidant potential, which is mainly responsible for
decarboxylation of amino acids [40–42].
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Table 1. Ammonia and biogenic amine production by food-borne pathogens spice extracts in tyrosine decarboxylase broth (mg/L).

AMN PUT CAD SPD TRP PHEN SPM SER TMA DOP AGM Group

Staphylococcus
aureus

(ATCC29213)

808.05 ± 68.56 a 15.85 ± 0.54 b 3.42 ± 0.21 cd 16.70 ± 1.36 b 0.28 ± 0.01 c 0.25 ± 0.01 b 16.16 ± 0.37 c 7.69 ± 0.25 d 3.21 ± 0.03 d 95.24 ± 1.63 c 39.18 ± 0.27 c C
84.60 ± 5.66 c 5.64 ± 0.22 c 2.01 ± 0.32 d 2.10 ± 0.20 c 0.00 ± 0.00 c 0.00 ± 0.00 b 5.50 ± 0.13 d 95.31 ± 1.66 a 3.96 ± 0.21 d 190.39 ± 13.94 b 42.49 ± 3.77 c SUM

323.35 ± 17.46 b 81.09 ± 4.21 a 27.99 ± 2.27 a 90.42 ± 8.11 a 17.80 ± 0.27 a 12.77 ± 0.51 a 42.13 ± 1.91 b 34.03 ± 2.62 b 22.34 ± 0.09 b 503.00 ± 0.34 a 71.83 ± 1.28 b CUM
344.10 ± 34.97 b 15.77 ± 1.13 b 16.87 ± 0.97 b 1.01 ± 0.01 c 0.28 ± 0.03 c 0.00 ± 0.00 b 9.32 ± 0.07 d 14.27 ± 1.37 c 12.79 ± 0.34 c 494.54 ± 16.05 a 111.65 ± 8.84 a BP
419.86 ± 30.89 b 8.34 ± 0.48 c 6.22 ± 0.40 c 15.25 ± 1.27 b 5.80 ± 0.18 b 0.41 ± 0.01 b 69.93 ± 3.29 a 8.99 ± 0.60 d 30.01 ± 2.15 a 24.37 ± 1.38 d 47.11 ± 1.62 c RP

Salmonella
Paratyphi A
(NCTC13)

836.47 ± 62.76 a 21.49 ± 1.04 b 4.39 ± 0.40 c 22.24 ± 2.08 b 0.00 ± 0.00 b 0.00 ± 0.00 b 17.81 ± 1.53 c 31.40 ± 2.52 b 18.65 ± 0.92 a 468.63 ± 41.47 a 70.90 ± 5.82 a C
71.51 ± 5.94 c 1.44 ± 0.02 c 1.73 ± 0.04 d 5.34 ± 0.48 c 0.00 ± 0.00 b 0.00 ± 0.00 b 2.96 ± 0.16 e 82.42 ± 2.93 a 4.24 ± 0.09 c 355.11 ± 30.40 b 26.40 ± 1.56 c SUM

286.12 ± 5.54 b 57.39 ± 4.55 a 27.41 ± 1.19 a 60.55 ± 2.34 a 16.54 ± 0.67 a 12.81 ± 0.85 a 58.75 ± 0.63 b 23.96 ± 0.51 c 17.17 ± 1.29 a 482.23 ± 37.95 a 80.87 ± 6.91 a CUM
78.34 ± 0.79 c 5.89 ± 0.39 c 3.07 ± 0.13 cd 0.00 ± 0.00 d 0.16 ± 0.02 b 0.00 ± 0.00 b 7.28 ± 0.74 d 8.56 ± 0.35 d 3.29 ± 0.16 c 45.24 ± 4.30 c 32.90 ± 1.59 bc BP

287.30 ± 18.56 b 4.23 ± 0.07 c 7.86 ± 0.42 b 21.25 ± 2.47 b 0.77 ± 0.01 b 0.97 ± 0.10 b 112.37 ± 2.42 a 19.71 ± 1.09 c 14.36 ± 1.09 b 322.84 ± 21.54 b 43.26 ± 1.82 b RP

Klebsiella
pneumoniae
(ATCC700603)

699.88 ± 45.21 a 26.36 ± 1.53 a 3.03 ± 0.04 c 16.66 ± 0.93 b 0.00 ± 0.00 b 0.00 ± 0.00 b 31.99 ± 2.78 a 57.20 ± 1.80 b 5.40 ± 0.26 b 815.25 ± 53.59 a 74.48 ± 3.94 b C
133.15 ± 10.39 c 16.88 ± 1.31 c 3.10 ± 0.13 c 12.04 ± 0.83 b 0.00 ± 0.00 b 0.00 ± 0.00 b 2.39 ± 0.02 c 65.51 ± 3.73 a 1.70 ± 0.04 c 434.63 ± 38.38 b 18.67 ± 1.33 c SUM
259.56 ± 24.37 b 21.25 ± 0.75 b 32.05 ± 2.53 a 55.52 ± 4.94 a 16.32 ± 0.29 a 14.56 ± 0.92 a 30.87 ± 0.79 a 44.31 ± 2.82 c 35.04 ± 1.48 a 457.67 ± 40.57 b 93.58 ± 6.11 a CUM
181.69 ± 7.46 c 13.18 ± 1.03 d 8.08 ± 0.14 b 4.67 ± 0.23 c 0.30 ± 0.01 b 0.00 ± 0.00 b 11.13 ± 0.46 b 6.27 ± 0.60 d 5.06 ± 0.21 b 97.64 ± 4.07 c 25.20 ± 1.11 c BP

267.97 ± 18.00 b 24.88 ± 0.96 a 9.14 ± 0.01 b 16.63 ± 0.41 b 0.39 ± 0.55 b 0.66 ± 0.08 b 31.02 ± 0.18 a 6.48 ± 0.10 d 0.91 ± 0.02 c 160.19 ± 5.44 c 22.55 ± 1.58 c RP

Pseudomonas
aeruginosa

(ATCC27853)

844.24 ± 46.07 a 2.20 ± 0.18 c 3.42 ± 0.33 c 46.77 ± 2.93 b 0.00 ± 0.00 c 0.28 ± 0.03 b 21.51 ± 0.47 c 16.91 ± 0.69 c 20.83 ± 1.54 b 668.71 ± 55.08 a 64.32 ± 4.17 b C
240.06 ± 8.52 c 1.07 ± 0.02 c 3.26 ± 0.26 c 2.88 ± 0.17 d 0.00 ± 0.00 c 0.00 ± 0.00 b 11.87 ± 0.39 cd 51.04 ± 1.59 a 4.34 ± 0.02 c 453.12 ± 41.40 b 24.99 ± 0.05 d SUM
328.78 ± 9.13 b 60.45 ± 7.54 a 59.49 ± 0.92 a 104.70 ± 8.03 a 21.56 ± 1.46 a 25.06 ± 1.62 a 67.97 ± 3.48 b 46.76 ± 2.20 b 48.89 ± 0.29 a 357.57 ± 12.44 c 92.37 ± 4.40 a CUM
166.48 ± 6.82 d 16.40 ± 1.12 b 3.44 ± 0.05 c 0.77 ± 0.10 d 0.00 ± 0.00 c 0.00 ± 0.00 b 7.69 ± 0.15 d 4.52 ± 0.19 d 1.34 ± 0.08 d 118.81 ± 6.11 d 33.98 ± 2.08 c BP

193.23 ± 18.26 d 3.30 ± 0.33 c 11.09 ± 0.52 b 35.86 ± 1.68 c 4.05 ± 0.01 b 0.36 ± 0.05 b 109.52 ± 10.36 a 14.83 ± 0.39 c 2.01 ± 0.07 d 175.72 ± 4.57 d 36.93 ± 0.56 c RP

Enterococcus
faecalis

(ATCC29212)

689.23 ± 56.42 a 4.88 ± 0.45 c 3.50 ± 0.16 c 90.22 ± 4.82 a 0.95 ± 0.07 b 0.35 ± 0.01 b 7.50 ± 0.09 c 20.98 ± 0.94 c 36.16 ± 2.58 b 998.43 ± 15.67 a 55.08 ± 4.19 b C
87.75 ± 1.91 d 1.46 ± 0.05 c 2.24 ± 0.09 c 4.43 ± 0.04 cd 0.88 ± 0.04 b 0.00 ± 0.00 b 2.97 ± 0.04 d 75.87 ± 2.93 a 5.56 ± 0.28 d 517.62 ± 38.93 b 22.97 ± 1.63 d SUM

290.61 ± 7.15 bc 23.78 ± 1.44 b 50.75 ± 3.56 a 0.00 ± 0.00 d 20.35 ± 2.08 a 15.75 ± 0.52 a 57.36 ± 4.62 a 25.57 ± 0.80 b 49.73 ± 0.54 a 532.55 ± 25.63 b 112.61 ± 4.92 a CUM
329.76 ± 4.75 b 26.72 ± 2.27 b 9.12 ± 0.11 b 8.14 ± 0.61 c 0.24 ± 0.00 b 0.51 ± 0.01 b 7.90 ± 0.50 c 13.65 ± 1.38 d 3.86 ± 0.28 d 94.04 ± 4.44 c 22.39 ± 1.63 d BP
234.01 ± 14.94 c 33.09 ± 1.69 a 3.74 ± 0.42 c 27.99 ± 0.94 b 0.37 ± 0.05 b 0.00 ± 0.00 b 41.42 ± 0.93 b 9.92 ± 0.71 d 10.79 ± 0.09 c 516.60 ± 29.40 b 43.36 ± 1.28 c RP

Yersinia ente-
rocolitica
(NCTC
11175)

570.71 ± 10.84 a 27.70 ± 1.05 a 4.95 ± 0.08 bc 48.16 ± 0.45 a 0.00 ± 0.00 c 0.00 ± 0.00 b 24.81 ± 0.65 c 135.38 ± 10.36 a 8.23 ± 0.53 b 1159.63 ± 114.29 a 65.27 ± 4.36 b C
55.10 ± 1.52 d 2.81 ± 0.27 c 2.27 ± 0.00 d 0.00 ± 0.00 e 0.00 ± 0.00 c 0.00 ± 0.00 b 2.59 ± 0.11 e 14.06 ± 0.29 c 1.28 ± 0.08 d 440.95 ± 28.32 c 25.79 ± 0.08 d SUM
278.62 ± 5.22 b 26.75 ± 0.58 ab 26.27 ± 1.62 a 38.72 ± 1.66 b 17.19 ± 0.27 a 14.43 ± 0.68 a 66.23 ± 1.43 a 97.55 ± 1.46 b 16.08 ± 1.42 a 599.80 ± 23.20 b 97.11 ± 1.07 a CUM
135.34 ± 6.13 c 2.67 ± 0.12 c 1.63 ± 0.04 d 4.41 ± 0.15 d 0.38 ± 0.03 b 0.00 ± 0.00 b 8.70 ± 0.47 d 6.28 ± 0.44 c 1.79 ± 0.10 d 102.60 ± 3.14 d 10.70 ± 0.10 e BP
143.63 ± 14.69 c 25.85 ± 0.65 b 3.67 ± 0.26 c 21.71 ± 2.23 c 0.63 ± 0.01 b 0.00 ± 0.00 b 51.04 ± 0.82 b 15.28 ± 3.22 c 5.67 ± 3.73 c 214.46 ± 120.13 d 31.45 ± 7.25 c RP

Campylobacter
jejuni

(ATCC
33560)

691.20 ± 66.03 a 35.49 ± 3.54 b 3.23 ± 0.00 c 37.71 ± 2.94 a 1.07 ± 0.09 b 0.00 ± 0.00 b 46.78 ± 2.95 b 15.33 ± 1.02 b 14.35 ± 0.12 b 636.14 ± 24.06 a 81.69 ± 7.40 b C
309.57 ± 8.03 b 7.84 ± 0.24 c 3.27 ± 0.01 c 4.22 ± 0.39 c 0.00 ± 0.00 c 0.00 ± 0.00 b 6.34 ± 0.21 c 11.06 ± 1.31 bc 6.39 ± 0.28 c 279.47 ± 7.78 c 19.04 ± 1.00 cd SUM
317.87 ± 9.43 b 71.68 ± 2.93 a 24.72 ± 0.56 a 0.00 ± 0.00 d 20.85 ± 0.29 a 26.80 ± 1.32 a 70.20 ± 2.55 a 125.78 ± 4.12 a 22.05 ± 0.29 a 628.98 ± 61.35 a 95.69 ± 0.04 a CUM
168.40 ± 9.99 c 13.43 ± 1.16 c 13.98 ± 0.24 b 3.96 ± 0.12 c 0.89 ± 0.01 b 0.00 ± 0.00 b 7.65 ± 0.61 c 10.91 ± 0.53 bc 6.23 ± 0.32 c 16.78 ± 1.17 d 11.24 ± 0.01 d BP

211.38 ± 17.40 c 9.30 ± 0.37 c 2.58 ± 0.08 c 20.91 ± 0.99 b 0.21 ± 0.01 c 0.00 ± 0.00 b 4.89 ± 0.27 c 7.84 ± 0.29 c 2.15 ± 0.06 d 494.09 ± 3.03 b 26.79 ± 0.87 c RP

Aeromonas
hydrophila

(NCIMB1135)

543.77 ± 52.09 a 3.29 ± 0.10 b 4.61 ± 0.77 c 78.29 ± 3.54 a 0.66 ± 0.08 b 0.97 ± 0.11 b 37.21 ± 1.51 b 36.74 ± 3.60 b 53.66 ± 0.98 a 746.78 ± 5.75 a 254.91 ± 17.94 a C
99.15 ± 2.96 c 5.71 ± 6.63 b 5.33 ± 0.28 c 6.36 ± 0.44 d 0.00 ± 0.00 c 0.00 ± 0.00 c 6.73 ± 0.22 d 7.36 ± 0.17 d 2.76 ± 0.23 d 578.68 ± 34.14 b 51.44 ± 1.79 c SUM
58.50 ± 3.53 c 25.64 ± 1.16 a 9.06 ± 1.11 b 32.21 ± 1.76 b 5.98 ± 0.28 a 4.04 ± 0.04 a 31.71 ± 1.03 c 66.56 ± 2.16 a 8.27 ± 0.64 b 707.41 ± 69.65 a 164.72 ± 4.99 b CUM
83.68 ± 5.21 c 1.74 ± 0.06 b 4.57 ± 0.14 c 1.29 ± 0.13 e 0.28 ± 0.02 c 0.00 ± 0.00 c 8.91 ± 0.19 d 5.07 ± 0.07 d 4.89 ± 0.42 c 57.53 ± 4.14 c 13.96 ± 0.95 d BP

256.36 ± 11.04 b 3.76 ± 0.21 b 11.18 ± 0.23 a 20.45 ± 0.68 c 0.70 ± 0.07 b 0.00 ± 0.00 c 93.57 ± 2.23 a 24.02 ± 0.25 c 1.42 ± 0.11 d 144.53 ± 6.51 c 29.24 ± 1.79 d RP

Different superscript lowercase letters (a–e) in a column indicate significant differences (p < 0.05) between the control (C) and bacteria treated with 1% extracts (w/v). Abbreviations of extracts, ammonia, and biogenic
amines (BAs): C—control; SUM—sumac; CUM—cumin; BP—black pepper; RP—red pepper. AMN—ammonia; PUT—putrescine—CAD—cadaverine; SPD—spermidine; TRP—tryptamine; PHEN—phenylethylamine;
SPM—spermine; SER—serotonin; TMA—trimethylamine; DOP—dopamine; AGM—agmatine. Spice extracts were added to the in tyrosine decarboxylase broth at a concentration of 1% (w/v).
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3.2.1. Histamine Production by Food-Borne Pathogen Bacteria in Tyrosine Decarboxylase Broth

Histamine is regarded as BAs that is dangerous when taken into the human body
at high proportions—(100 mg/kg) [32]. Histamine is usually produced from histidine
converted by microorganisms or their enzymes [43]. Histamine is generally used for the
estimation of quality and freshness indexes for meat-based foods [3]. Among all of the
microorganisms evaluated, sumac extract had the strongest inhibitory effect (<10 mg/L) on
histamine production (Figure 2). On the other hand, Y. enterocolitica was completely inhib-
ited. This was followed by red pepper, which exhibited significant inhibition (<10, mg/L),
for S. Paratyphi A, K. pneumoniae, Y. enterocolitica, P. aeruginosa, and A. hydrophila. As for
the rest of the samples, production was above 10 mg/L but below the maximum allowable
level. On the other hand, black and red pepper extracts were observed to promote the
production of histamine by S. aureus, S. Paratyphi A, and Y. enterocolitica. Cumin extracts
increased production by all FBP except for E. faecalis and A. hydrophila. Therefore, we can
speculate that spice extracts can be used against the production of histidine due to their
ability to inhibit bacterial growth, arrest biogenic amine synthesis, and inhibit amino acid
decarboxylation, specifically enzyme (histidine decarboxylase) activity [44,45].
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Similar results were demonstrated by Shakila, Vasundhara [46] who detected the
efficacy of spice extracts (cinnamon, clove, turmeric, and cardamom) on in vitro histamine
production by Morganella morganii. Based on the proposed inhibition of histamine decar-
boxylation activity exhibited by spices, the aforementioned results were obtained. Some
extracts, however, were also found to promote amine production due to their lower activity
in inhibiting histamine decarboxylation, corresponding to a delay in amine production [42].

3.2.2. Tyramine Production by Food-Borne Pathogen Bacteria in Tyrosine Decarboxylase Broth

The tyramine production profile of microorganisms in TBD is shown in Figure 3. The
sumac extract significantly increased the formation of tyramine by S. aureus, S. Paratyphi A,
and P. aeruginosa. The black and red peppers were found to significantly inhibit tyramine
production by S. aureus, S. Paratyphi A, E. faecalis, Y. enterocolitica, and A. hydrophila. Also,
cumin extracts were observed to promote the production of tyramine at levels higher
than those produced in the control sample, with the exception of the strain C. jejuni, A.
hydrophila, and S. aureus. Tyrosine was observed to be produced by the tyrosine amino
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acid by the action of a microbial enzyme [3]. Tyramine is associated with several disorders
in humans, and in some cases its toxicity was reported to be higher as compared to
histamine [47]. There have been similar results regarding the impacts of spice extracts
on BAs (tyramine) production in minced meat [48]. It was concluded that spice extract
inhibited microorganism growth and amino acid decarboxylase activity, lowering the
production of amine. A recent molecular docking study has shown the ability of spices to
bind with the amino acid decarboxylase active site and inhibit the enzyme, resulting in less
BAs production and accumulation [49].
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4. Conclusions

Sumac extract exhibited significant inhibition of Gram-positive and Gram-negative
bacteria, while cumin, black pepper, and red pepper spice extracts had lower bactericidal
activities. This study also demonstrated the inhibitory effects of four spice extracts (sumac,
black pepper, red pepper, and cumin) on the production of ammonia and BAs (histamine,
tyramine, putrescine, cadaverine, spermidine, tryptamine, phenylethylamine, spermine,
trimethylamine, serotonin, dopamine, and agmatine) by eight food-borne pathogen bacte-
ria using tyrosine decarboxylase broth. Results showed that sumac was the most effective
inhibitor, followed by black pepper, red pepper, and cumin extracts. All evaluated mi-
croorganisms produced less histamine when sumac extract was used, while cumin extract
induced histamine production. In order to ensure food safety, sumac extract is recom-
mended as a food preservative for controlling biogenic amine production. Further research
should be conducted on the various methods of extracting these materials, particularly
sumac extract. A variety of foods, their antioxidant and antibacterial properties, and their
safety aspects should be discussed in addition to their integrated or combined use with
other technologies. Integrating sumac extract with other technologies has the potential
to enhance its effectiveness and expand its applications. By combining it with innovative
delivery systems or processing techniques, we can unlock new possibilities for preserving
food, improving health, and combating bacterial infections. This integration could lead
to synergistic effects and create unique solutions in various fields such as food science,
medicine, and environmental sustainability.
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