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Abstract
To enhance the resilience of food systems to food safety risks, it is vitally impor-
tant for national authorities and international organizations to be able to identify
emerging food safety risks and to provide early warning signals in a timely man-
ner. This review provides an overview of existing and experimental applications
of artificial intelligence (AI), big data, and internet of things as part of early
warning and emerging risk identification tools and methods in the food safety
domain. There is an ongoing rapid development of systems fed by numerous,
real-time, and diverse data with the aim of early warning and identification
of emerging food safety risks. The suitability of big data and AI to support
such systems is illustrated by two cases in which climate change drives the
emergence of risks, namely, harmful algal blooms affecting seafood and fungal
growth and mycotoxin formation in crops. Automation and machine learning
are crucial for the development of future real-time food safety risk early warning
systems. Although these developments increase the feasibility and effective-
ness of prospective early warning and emerging risk identification tools, their
implementationmay prove challenging, particularly for low- andmiddle-income
countries due to low connectivity and data availability. It is advocated to over-
come these challenges by improving the capability and capacity of national
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2 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

authorities, as well as by enhancing their collaboration with the private sector
and international organizations.

KEYWORDS
data sharing, digital tools, machine learning, proactive system, risk prediction

1 BACKGROUND

Ensuring food safety has been and remains a key objec-
tive for governments and policymakers, food industry, and
researchers worldwide. Nevertheless, new challenges may
be posed by, inter alia, the increasing complexity of food
supplies, accelerating climate change, intensifying inter-
national food trade, new food sources and technologies,
circular economy, and sprawling urban agriculture. Effec-
tive tools and methods for early warning and emerging
risk identification form a solid basis for achieving food sys-
tems that are resilient to food safety risks, a priority for
national and international authorities and organizations
dealing with food safety, enabling their preparedness for
emerging food risk prevention, mitigation, and response
(Food and Agriculture Organization [FAO], 2022).
There are many early warning and monitoring systems

in operation that can contribute to emerging risk iden-
tification system. These include systems that focus on
foodborne disease outbreaks and animal disease related
to feed or food safety risks, as in the European Commis-
sion’s Rapid Alert System for Food and Feed (RASFF).
The World Health Organization’s (WHO) Global Strategy
for Food Safety notes that Member States’ food safety sys-
tems should become forward-looking in order to make
them more effective (World Health Organization [WHO],
2022). Such systems should monitor for the emerging
drivers of change and trends that ultimately contribute to
the emergence of food safety hazards (WHO, 2022). The
FAO/WHO International Food SafetyAuthoritiesNetwork
(INFOSAN) Strategic Plan 2020–2025 has also empha-
sized the need for a proactive approach to emerging risk
identification and supports the countries to develop this
capability (FAO, 2022). Information from different elec-
tronic information systems can be integrated to make
better predictions. In the public health sector, the epi-
demic intelligence from open sources initiative adopts the
One Health principle, which allows early detection of
health threats and conducting subsequent interventions
(Abdelmalik et al., 2018).
A review based on bibliometric analyses of artificial

intelligence (AI) and machine learning applied to food
safety reveals that historically, the field has been progres-
sively advancing from 2012 on, covering different domains

across the production chain, including crop breeding, agri-
cultural production, food processing and distribution, and
human nutrition (Liu et al., 2023). AI can be useful for
food safety practitioners in both the industry and the pub-
lic service, for example, with regards to safe raw material
selection, and their processing and packaging. The use of
AI for food safety surveillance and hazardous source track-
ing purposes enables the identification of critical points
and processes that are susceptible toward the introduction
of contaminants or unsafe elements into the food supply
chain. For microbiological hazards, AI can be used the
identification and characterization of microbes and the
modeling of microbial population dynamics and growth
(Qian et al., 2023). Also at the retail stage, both staff and
customers can be targeted by AI applications with the aim
of enhancing food safety. For example, besides predictive
analytics, staff could be trained to use augmented or virtual
reality and be assisted in their safety routines by robotics.
AI could help guard over the consistency of information
and practices, such as consumer information about and
staff handling of allergens. Consumers could also benefit
from directions and advice given by personal food safety
assistants (Friedlander & Zoellner, 2020). Practical exam-
ples of AI applications in industry and government include
AI-assisted detection of Escherichia coli with optical imag-
ing, vegetable growers’ management of potential problems
in leafy greens produce based on weather, location, and
water quality data; and foodworkers’ behavioral data in the
workplace; as well as the US FDA’s AI-supported identifi-
cation of potentially problematic lots of imported seafood
such as shrimps (Miller, 2023). Yet an in-depth review
of the use of these techniques for the identification of
prospective emerging risks is still lacking.
This article aims to provide a comprehensive overview

of the existing applications of AI, big data, and internet
of things (IoT) in developing early warning and emerg-
ing food safety risk identification tools andmethods, based
on data gathered from different sources (i.e., Scopus, Sci-
ence Direct, and Google Scholar). Details of the approach
followed are provided in the Supplementary Materials. In
brief, 40 original research articles and 57 reviews had been
retained after several rounds of selection. These items and
in some cases documents referred to by them were used as
input for this review.

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 3

F IGURE 1 The food supply chain, the drivers for change within influential sectors [as defined by Noteborn (2006)] acting on it, and the
various types of data coming from it which can be used for emerging risk identification.

2 EMERGING FOOD SAFETY RISKS,
AND THE DRIVERS AND INFLUENTIAL
SECTORS DRIVING THEIR EMERGENCE

A holistic approach toward emerging risk identification
within the food chain was developed at European Food
Safety Authority (EFSA’s) and national authorities almost
two decades ago through projects such as Per-Apt and
EMRISK and has been adopted and pursued by many oth-
ers since (Noteborn, 2006). This approach is based on the
insight that “drivers” give impetus to trends and other
phenomena within “influential sectors” surrounding the
food production chain, which could ultimately lead to the
emergence of a risk [see the glossary of The European
Food Safety Authority [EFSA] (2023)]. This need not nec-
essarily be only new risks but could also be known risks
that reemerge (e.g., from new food sources) or for which
the vulnerability has increased, amongst others. Exam-
ples of sectors are culture and demographics; agriculture
and fisheries; economy; energy, nature and environment;
science, technology, and industry; government and poli-
tics; information andmedia; and public health andwelfare

(Figure 1). Within the sectors, indicators are measures
that are associated with these changes and that therefore
indicate the occurrence of a hazard. Monitoring of indica-
tors, particularly if they rise above a threshold level that
would trigger an alert requiring follow-up assessment of
its relevance, would be part of an emerging risk iden-
tification system (Noteborn, 2006). For example, certain
weather anomalies (e.g., heavy rainfall) could be indica-
tive of eventual crop contamination with mycotoxins or
pathogens.

3 MODERN SYSTEMS FED BY
NUMEROUS, REAL-TIME, AND DIVERSE
DATA

There is a concurrence of innovations in both data gath-
ering, data storage and sources, and the ways to process
the vast amount of data. This allows for the holistic real-
time measurement of many data such as indicators of
drivers (e.g., climate change, weather conditions, trade
flows, new food sources and food production systems, and
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4 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

TABLE 1 Summary of the various data sources and data processing technologies.

Technology
category

Technology
name Purpose Advantages

Disadvantages (and
barriers to adoption)

Data
sources

IoT Situational awareness in real
time

Extends beyond
conventional monitoring
data

Need to be combined with
other data for meaningful
emerging risk prediction

Unstructured
data (e.g.,
social media)

Gauge unofficial channels for
early reports of issues with
food safety of products and
establishments

Public opinion can help
government formulate
policies addressing
societal needs

Data unification needed

Blockchain Traceability Full, internal traceability of
food commodities
throughout the
production chain;
transparency

Elements incompatible
with legislation on
personal data protection

Whole-genome
sequencing

Outbreak monitoring; clade
discernment

Comprehensive
information allowing for
establishing relationships
otherwise not possible

Lack of technical facilities
in LMICs

Data pro-
cessing

Text mining Prediction of hazards based on
correlations within text

Handling of large amounts
of data; identification of
hazards overlooked

Still needs expert judgment

AI, machine
learning

Prediction of food safety issues
based on circumstantial data

Handles both structured
and unstructured data

Reproducibility challenging

Abbreviations: AI, artificial intelligence; IoT, internet of things; LMICs, low- and middle-income countries.

consumption patterns) for emerging hazards within influ-
ential sectors, complementingmonitoring data, which can
also be complex, such as for genomics of food pathogens.
An impression of how these various data is integrated is
provided by Figure 1 and Table 1.

3.1 Data sources

3.1.1 Digital devices

Information sources, which are currently used for food
safety early warning and as emerging risk identification
tools, are not limited to the conventional monitoring
data collected by food inspectors and companies. For
example, precision agriculture, radiofrequency identifica-
tion (RFID), and wireless sensor networks allow for the
real-time gathering of food safety or quality data in pri-
mary production, which can be further processed by early
warning and emerging risk tools.
The meat production and dairy chains are examples

of technologically advanced environments where various
digital devices (e.g., RFID tags and readers, GPS track-
ing devices) can add to the surveillance of potential food
safety hazards. For example, both in the production chain
and on the farm, biosensors can be used to measure
the presence of certain pathogens (e.g., through anti-

body binding). These devices could be attached to smart
phones. In addition, camera surveillance in slaughter-
houses could be used to monitor carcasses for pathological
conditions such as lesions (Farag et al., 2021; Nastasijević
& Vesković Moračanin, 2021). Notably, biosensor tech-
nology is a means to assist with rapid information at
points of care. Biosensor technologies include, for exam-
ple, lateral flow devices and RFID technology. They could
be used to detect, qualitatively, semiquantitatively, and
quantitatively, pathogens (e.g., Salmonella), toxins (e.g.,
mycotoxins), and bacteriophages (indirect indicator for
certain pathogens). Biosensors could also be incorporated
into packaging materials (Neethirajan et al., 2018). Such
biosensors within “Intelligent packaging” could also serve
as a compliance tool for food safety management systems
based on HACCP (Hazard Analysis and Critical Control
Points), measuring tens of data in critical control points in
real-time (Yam et al., 2005).
Biosensors and other types of sensors would create a

“situational awareness,” enabling the detection of anoma-
lous behavior, such as in the physical activity of livestock.
Although biosensors for humans have been experimen-
tally tested for a range of ailments, the application of
biosensors to animals is limited by affordability and the
extent to which it is possible to interpret animal func-
tions. Besides common parameters such as body temper-
ature, breath, sweat, and movement, biosensors worn by
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AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 5

livestock could also be employed to measure biochemical
parameters such as glucose levels in blood (Zhang et al.,
2021). These items would complement the video and audio
surveillance methods already used in “precision livestock
farming.” These include cameras, sound systems, and
audio in pig farming to track feeding and drinking behav-
iors and movement, amongst others (Tzanidakis et al.,
2021). In addition, computer vision systems are also used
in abattoirs to detect pathological lesions and fecal contam-
ination on carcasses (Nastasijević & Vesković Moračanin,
2021). Ren et al. (2022) noted that the IoT is being applied
in meat cold chain logistics, such as RFID based tracking
plus humidity sensors, as well as digital twins, particularly
hydrodynamic fluid modeling. RFID tags would allow to
trace pigs individually during their productive life up to
the slaughterhouse (Xu et al. (2013). Another example of
behavioral observations used to safeguard food safety is
that of the AI system developed by a Japanese company
to monitor the behavior of staff in slaughterhouses (i.e.,
adherence to and consistent application of good hygiene
and sanitation practices) and handwashing in kitchens
(Saxena & Gautam, 2021).
The costs for these different types of device can vary

widely (Tekin et al., 2021). For example, a reader of elec-
tronic identification tags of dairy cows may cost up to
$1425, which may act as a barrier to their adoption by
less affluent communities and end-users. Other challenges
linked to IoT are those of high energy consumption and
the incompatibility of different datasets. Maksimovic et al.
(2019) contended that the solution for these problems
would be the use of nanodevices that could help spanning
the Internet of Nano Things by incorporating nanode-
vices such as nanosensors into food packaging that will
enable the sensing of signals at a nanoscale within the
environment. For example, an “intelligent” food packag-
ing containing nanobiosensors could contain information
for consumer and allow for measurement of the quality of
the packaged food.
Hill et al. (2017) raised doubts on the usefulness of the

reliance on big data alone for food safety surveillance.
The possibilities of machine learning for the prediction
of food infections from pork consumption have been
explored by these authors using simulations based on
a hypothetical food chain model, similar to one previ-
ously used by the EFSA for Salmonella in pigs. They
observed that certain anomalies can be detected by using
whole-genome sequencing (WGS) and supply chain data
from critical control points as inputs into early detec-
tion algorithms as predictive models, yet the rare true
cases will be overwhelmed by false positives. The best,
although not optimal, performance was achieved if the
machine learning was applied to individual cases, with 3
out of 4 true cases correctly predicted yet still amongst

many other false positives, which reduced the predictabil-
ity to 0.01. It showed that variance in food supply chain
characteristics; for example, processing temperature and
contamination burden had more impact on the decision
outcomes than pathogen genotype, for example (Hill et al.,
2017).

3.1.2 Unstructured data

The extent to which unstructured data (e.g., text data from
websites, blogs, and social media) are being utilized in
managing food safety issues has been reviewed by Wang
et al. (2021). Specifically, the review considers the appli-
cation of mobile phones as food safety detecting devices,
and the use of social media as an early warning system
for food safety issues. Despite the advantage of using social
media data for disclosing hidden patterns, poor data qual-
ity and privacy concerns need to be addressed. A study
using Twitter as input for a text mining machine learning
model showed a good correspondence with true incidence
of a romaine lettuce food poisoning in the USA in 2018
(Tao et al., 2021). The most frequently used sources of
unstructured data related to food safety can be found in
the review published recently by Jin et al. (2020), where
the option of using smartphones and handheld devices
for food safety data collection is discussed. The data from
socialmedia, satellite images, IoT, and blockchain technol-
ogy are current ongoing developments for obtaining data
for smart food safety monitoring systems to manage food
safety issues.
Various unstructured data sources that are relevant for

the food safety domain involve the use of image data (from
food packaging, vegetable, and animal products), sensor
data (primarily from spectroscopy and electronic noses),
and text data derived from online media, reports, and
emails. Besides data on food safety, other data sources on,
for example, climate and trade statistics provide added
value to increase the accuracy of the prediction of food
safety issues through application of a food systemapproach
that takes into account social, economic, and environmen-
tal factors as drivers and consequences of food safety issues
(Wang, Bouzembrak, Lansink, et al., 2022). In addition, a
combination (“triangulation”) of the outputs from these
data sources with, for example, expert and consumers’
knowledge helps improvingmodel validity (Hadjigeorgiou
et al., 2022).
Li et al. (2021) considered the importance of unifying

the management of data from multiple sources for a tool
that the group had developed for the detection of food
safety hazards and early warning. Whilst data from food
inspections were to feed into the associated database, both
professionals and the public at large are the prospective
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6 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

users and sources of information for this tool, in future
possibly also via a mobile phone application.
Wang et al. (2021) identified combinations of social

media analysis and big data being deployed to ensure
food safety. These include data from surveillance systems
and surveillance of devices involved in hygiene control;
food buying patterns, and the integrative food safety
collaborative platform (FOSCOLLAB) of WHO.

3.1.3 Blockchain

Blockchain may be an attractive tool to comply with food
traceability requirements, such as full traceability and
transparency (also toward consumers), and the speed with
which products and data can be traced back and data
retrieved in case of recalls. Other advantages of blockchain
technology include reducing probability in changing or
tampering data that have been entered into the system,
and the independent verification of data packages. It does
not require central entity for oversight. Moreover, “smart
contracts” developed within the blockchain can specify
the requirements for food safety that the products need
to be checked against (Singh et al., 2022). A great vari-
ety of options is available for the data and documents that
can be included depending on the design and acceptable
volume of data, which does not have to be exhaustive
for providing relevant information. It has been suggested
that the inclusion of traceability and safety data into the
record of the blockchain should be pilot tested in an
isolated, protected area for software development (“sand-
box”), using data representative for the real-world scenario
(Hernandez San Juan & González-Vaqué, 2020). A num-
ber of challenges still may have to be overcome if such
systems are to be implemented, such as those associated
with scalability, security, privacy, and storage capacity. The
interoperability of the blockchain models and regulations
used, as well as their public availability, will be key to
ensuring that an operator with a distributed technology
can join any supply chain of its preference. Various strides
toward this end are already made, such as rules for identi-
fying items across different platforms supported by various
collaborative initiatives (Bhat et al., 2022).
Soon (2022) investigated the application of blockchain

concept and digitization of food chain to enhance food
traceability, which can contribute to food integrity and
authenticity (i.e., positive attributes beyond safety and
quality, such as origin country, sourcing, distribution,
and fairness). Consideration was given to recent devel-
opment using portable and smartphone-based food diag-
nostic technologies as a new generation of miniaturized
equipment for food fraud detection (Soon, 2022).

Manning and Kowalska (2021) extolled the potential
benefits of blockchain for traceability and product recall,
covering the whole chain and reducing opportunities for
fraud. Vimalajeewa et al. (2020) described how a com-
bination of blockchain, IoTs, and nanotechnology can
be exploited for sensing chemicals in the environment.
They elaborate this concept in a case study in which
pesticides are applied on the farm and data are trans-
mitted through the chain via blocks, whilst the amount
of chemicals used is traceable as the farmer uses tokens,
that is, digital assets stored securely on the blockchain,
in this case a colored token with the color representing
the level of a chemical in the soil (Vimalajeewa et al.,
2020).

3.1.4 Whole-genome sequencing data

As regards WGS data from microbial pathogens, Allard
et al. (2019) featured an example of how this technol-
ogy helped the authorities to link sporadic food poisoning
events to a contaminated product, identify the causative
pathogen of foodborne disease, and formulate action-
able risk management measures. In this case, food safety
inspectors had collected environmental samples includ-
ing hundreds of swabs from food contact surfaces and
other spots within a particular ice-cream manufactur-
ing plant during 2 years period. Based on clustering of
related single-nucleotide-polymorphism (SNP) genotypes
of Listeria monocytogenes pathogen with less than 20 SNPs
difference, the results demonstrated that some strainswere
“resident”within the plant, persisting throughout the sam-
pling period. In addition, the similarity of some strains
with those involved in previously reported food poison-
ing events was established, and the causative link was
further corroborated by observable insanitary conditions
and exposure data. This triggered a voluntary product
recall by the company and subsequently its suspension by
the US federal administration. The authors note that this
would have previously not been possible without the WGS
technology (Allard et al., 2019).WGS has replaced the tech-
nique of pulse-field gel electrophoresis in various networks
for monitoring of specific pathogens, such as PulseNet
(Allard et al., 2019).
A strategy proposed by O’Brien (2019) is to obtain

“actionable insights from combiningmicrobiologicalmon-
itoring and predictive analytics.” Through this approach,
the content of actionable information can be further
increased by extending the mere detection of pathogens
withmore data on the context, for example, metagenomics
of the microbiome in which it occurs (O’Brien, 2019). This
is already being conducted in the USA (Kovac, 2019).
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AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 7

3.2 Data processing: text mining and
artificial intelligence

The EFSA explored the possibility of deploying a text min-
ing tool for identification of emerging risks in seafoods
(salmons and oysters). In abstracts from two scientific bib-
liographies (medical and food science and technology),
the text mining tool identified the concurrence of cer-
tain concepts within the same sentence. These concepts
belonged to different categories according to a customized
hierarchical ontology. These were initially used for retriev-
ing abstracts (e.g., on biological and chemical hazards)
and subsequently utilized in further in-depth exploration,
using ontologies with commonly used names and syn-
onyms for chemical hazards, and human and animal
pathogens and health impacts. The automatically gener-
ated outputs were scrutinized by experts to obtain a final
selection for follow-up. This way, various seafood-related
emerging risks could be identified (Lucas Luijckx et al.,
2016).
Two recent publications further advance the concept of

text mining into the detection of unknown food safety haz-
ards. In the first study, the European Media Monitor and
scientific literature served as data sources for the success-
ful identification of the occurrence of illegal stimulants in
food supplements. This approach was based on the use of
AI involving aword-embeddingmodel. The latter had been
trained to recognize the context surrounding the mention
of stimulants within a given text (Gavai et al., 2021). The
second study explored the possibility of predicting chem-
ical hazards in milk based on possible correlations with
changes in economic, environmental, social, and techno-
logical factors within six major dairy-producing countries.
The chemical hazards reported through RASFF within the
studied period included mycotoxins and veterinary drug
residues in particular, besides industrial contaminants,
allergens, composition, organoleptic properties, food addi-
tives, and other contaminants. The results showed that
anomalies in drivers of change (e.g., milk price) may
precede food safety problems (RASFF notifications) with
significant statistical correlations and a lag time from the
peak in milk price until that in RASFF notifications of
up to 2 years, that is, 10–13 months in The Netherlands
and Germany and 20–32 months in France and Italy (Liu,
Bouzembrak, et al., 2022).
In addition, new and emerging forms of data have been

witnessed, for example, social media data have been used
as an alternative to traditional survey data and used to
identify peoples’ opinions and trends in priorities and con-
cerns about emerging food risks. Moreover, various types
ofmultimedia data (e.g., transaction, registration, tracking,
and images) have been combined in making AI models
(Radanliev & De Roure, 2023). Tao et al. (2020) reviewed

the data sources (mainstream news media, government
websites, specialty blogs, social media platforms like Twit-
ter, Facebook, and Instagram), computational methods,
and applications of text data in food industry and showed
that application of text data analysis can be beneficial
for improving food safety and food fraud surveillance by
checking different types of information for trends and pat-
terns, such as food safety and fraud surveillance, dietary
patterns, consumer-opinions, new-product development,
and feedback to online food services.
Yang and Liu (2021) proposed a framework for datamin-

ing for food safety risks. This entails a system for storing
inspection and enterprise data, plus a food risk model to
predict occurrence of hazards. Seven categories of hazards
are included, with different hazards being relevant for dif-
ferent types of product, such as Salmonella and nitrite for
dairy products (Yang & Liu, 2021).
Recent breakthrough developments in the machine

learning and AI field have enabled the identification of
early warning signals and emerging risks made possi-
ble by using various data sources. Bayesian networks,
neural networks, random forests, and decision-trees have
been identified as the most used ML methods in the
food safety domain. For instance, Bayesian networks were
used successfully to predict the occurrence of chemical
food hazards, such as pesticide residues and mycotoxins
in fruits and vegetables from three geographically dis-
tinct countries. The machine learning approach applied
system drew upon open-access data from EU food law
enforcement alerts, agricultural economic and agronomic
statistics [Food and Agriculture Organization Corpo-
rate Statistical Database (FAOSTAT)], and meteorological
data [National Oceanic and Atmospheric Administration
(NOAA)] (Bouzembrak & Marvin, 2019). In addition,
two examples of successful machine learning approaches
applied to the dairy sector have been provided, namely,
the detection of unknown hazards using word embedding
(Gavai et al., 2021), and the ability to predict hazards based
on altered behavior in drivers of change (Liu, Bouzembrak,
et al., 2022).
Wang, Bouzembrak, Lansink et al. (2022) reviewed the

application ofmachine learning techniques tomonitor and
predict food safety issues. Various machine learning algo-
rithms for both unstructured and structured data in the
food safety domain were identified. Of these, Bayesian net-
work analysis is the most frequently used algorithm for
analyzing structured data as it allows easy incorporation
of expert knowledge, which can be obtained, for example,
through brainstorming and other elicitation events. More-
over, the model structure is relatively easy to understand.
The neural network is the main algorithm for analyzing
unstructured data because of its ability to handle both
image and text data.
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8 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

AI focused on narrow tasks (“weak artificial intelli-
gence”) and machine learning approaches are also being
applied in the field of food safety. They can handle differ-
ent types of data, such as text, transactional, and trade data.
For example, machine learning has been applied experi-
mentally to predict theminimum inhibitory concentration
of antibiotics to microbial pathogens (e.g., non-typhoidal
Salmonella) based on genomic data (Deng et al., 2021).
In the field of toxicology, Pérez Santín et al. (2021)

identified a departure from animal experimentation (as
demanded by regulations in, e.g., EU and USA), which
has occurred via computational methodologies toward
the current usage of AI algorithms (e.g., machines learn-
ing and deep learning). Combined with nondestruc-
tive methodologies (e.g., spectroscopic technologies), this
trend reduces the analysis time and costs.
Chen et al. (2021) identified food hygiene as one of the

main indicators for a risk prediction tool for possible inci-
dents at large-scale youth events. This tool is based on
random forest using 10fold cross-validation, reaching an
accuracy of 86%, random forest, and outperforming other
learning methods tested in the same study (Chen et al.,
2021). Liu and Hu (2017) used a serial combination of three
tools to enhance the ability to predict damage to strawber-
ries during transportation of this perishable product. The
first step consisted of a neural network, which has a high
accuracy (90%) in terms of predicting spoilage but lacks
stability and interpretability. It is followed by the robust
classification and regression tree algorithm and then by
Bayesian Modeling with good stability and interpretabil-
ity. The temperature, humidity, and mechanical damage
of strawberries were the variables which were measured
regularly (at 15-min intervals) during transportation in the
case study considered, with metamorphism as end point.
If 70% of data were used for training and 30% for test-
ing, the combined model outperformed all single ones,
reaching 95% accuracy, thereby helping to avoid perishing
of foods before they reach the market (Liu & Hu, 2017).
Wu and Weng (2021) explored the use of “ensemble learn-
ing,” that is, using multiple machine-learning methods
in parallel. They tested these on historic data for three
types of problematic foodstuffs whilst considering 125 fac-
tors. Ensemble learning applied to three different datasets
improved the accuracy of predictions (85.5%–95.8%) over
the use of single machine-learning methods in all but one
(i.e., 14) comparisons (78.7%–96.7%). The hit rate of inspec-
tions, if guided by the ensemble model, would increase
by 3.5–9.3 times over that of random inspections. The out-
comes hence enable more efficient use of food inspections.
Kong et al. (2021) used a “deep stacking network” approach
with relatively modest memory requirements, whichman-
aged a high accuracy (94.88%–97.62%) for prediction of
various mycotoxins, chemicals (heavy metals), and micro-

bial risks in China within the grain supply chain used as
case study.
Deep learning based on feature representation could

offer stronger ability than traditional learning methods,
as well as the possibility to transfer its learning outcomes
to other systems, thereby reducing training time for other
models (Zhou et al., 2019). Liu (2021) outlined a deep-
learning system to be developed for the food safety of urban
agriculture products, extending the methodology applied
in the area of medical imaging. Such a system should
include big data technology, encompassing the rapid col-
lection of data from all segments of the supply chain,
barcode technology for identification of products, and
technology for product traceability based on data exchange
(Liu, 2021). The use of AI, particularly machine learning,
in developing countries would allow to cope with con-
straints of limited data and other resources (De-Arteaga
et al., 2018).

4 CASE STUDIES ILLUSTRATING THE
POTENTIAL CONTRIBUTIONS OF BIG
DATA AND AI (MACHINE LEARNING) TO
EARLYWARNING AGAINST
CLIMATE-CHANGE-RELATED FOOD
SAFETY HAZARDS

Scientific evidence is increasing on the importance of
climate change as a driver of emerging food safety risks
that should be considered when designing food safety
systems (EFSA, 2020; FAO, 2022; Tirado et al., 2010). The
early identification of climate-change-related problems
through surveillance of environmental health parameters,
food safety, and human and animal disease could help
formulate and implement solutions for mitigation of its
impacts caused by diminished productivity, increased irri-
gation, changed agronomic practices, reduced crop land
arability, and increased pest pressure, in a timely manner
(Gomez-Zavaglia et al., 2020). Talari et al. (2021) made
the case for the use of big data analytics combined with
decision-support systems for the prediction of climate-
change related hazards and decision-making to prevent
these from developing into real risks. These authors
suggest various cases that would be particularly amenable
to future development of such a system, such as (i) the
dairy chain, which is prone to climate-change-related
impacts on the safety and quality of its products and in
which, at the same time, a wealth of data is collected along
the production chain, which, as big data, could feed into
decision-support systems informing potential measures to
control them, and (ii) environmental contaminants and
toxins, such as those polluting soils caused by heaving
flooding of agricultural land with contaminated water
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AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 9

containing, for example, chemical contaminants such as
PCBs, heavy metals, or pesticide residues, of which food
safety competent authorities keep track (Talari et al., 2021).
Marvin et al. (2013) reviewed the impacts of climate

extremes on food safety issues and proposed to develop
approaches for proactive early warning of food safety
hazards induced by climate-driven natural disasters by
consolidating information on environmental conditions
combined with a One-Health approach that takes stock of
monitoring data on plant, animal, and human disease and
considers their interrelation. Two examples of such a sys-
tem mentioned in their review have indeed evolved since,
namely, warning systems for harmful algal blooms (HABs)
and for mycotoxins (naturally occurring toxins formed by
certain fungi, often under warm and humid conditions,
and capable of causing disease in humans and animals),
which will be reviewed in more detail in the following
subsections.

4.1 Harmful algal blooms

HABs in marine environments may arise under favorable
weather conditions, such as warmer temperature, extreme
rainfall) and a surplus of nutrients (eutrophication) dis-
solved in the seawater, for example, phosphorus and
nitrogen originating from run-offs from agricultural lands
into waterways. These blooms threaten especially aqua-
culture operations because of the exposure of the trapped
aquaculture stocks (fish, molluscs, and crustaceans) to
toxin-producing microalgae. These microalgae and their
biotoxins are not only toxic to the cultured aquatic ani-
mals (e.g., salmon and trout) but may also be consumed
by them and transferred to foods for human consump-
tion, particularly in the case of filter-feeding species (e.g.,
mussels). Both monitoring and forecasting systems are
in place in various parts of the world, monitoring for
the presence of associated biotoxins in bivalve species,
or the prediction based on modeling outcomes imput-
ing known growth characteristics of toxin-producing algal,
weather conditions, seawater temperature, and so on (U.S.
National Office for Harmful Algal Blooms, 2019). Longer-
term HAB forecasting, with a view on protection of public
health and food safety in particular, would entail the
collaboration between local and coastal observational pro-
grams on one hand and food safety monitoring activities
on the other. In addition, this would be further sup-
ported by extension of the physicochemical and biological
parametersmeasured by existing observation stations with
HAB-relevant parameters (species, community composi-
tion, and toxicity). Moreover, these networks should be
extended to less common latitudes (Wells et al., 2020).
Notably, the Intergovernmental Oceanographic Commis-

sion under UNESCO has started an initiative into this
direction, the Harmful Algal Information System, includ-
ing a database of algal toxins, information on algal species
and their biogeographies, a resource of experts, and global
HAB status reports being produced on a regular basis
(The Intergovernmental Oceanographic Commission of
UNESCO [IOC UNESCO], 2022).
A case in point are the devastating “red tides” caused

by the toxin-forming unicellular dinoflagellate Margale-
fidinium polykrikoides (formerly known as Cochlodinium
polykrikoides) being responsible for an unusually pro-
longed (over 10-month) and sprawling event in theArabian
Gulf (2008–2009), causing death of fish and blockage of
water desalination plants, amongst others (Richlen et al.,
2010). The contribution of climate change to HABs in this
oceanic area is yet unclear, whilst fouling by ballast water
and seasonal impacts of cyclones (e.g., upwelling)may also
be implicated, amongst others (Lincoln et al., 2021). M.
polykrikoides is also known to cause red tides impacting
on aquaculture elsewhere, such as in Korea in 2014 (Shim
et al., 2021). Red tides are also caused bymany other species
wreaking havoc in other parts of the world, such as Kare-
nia brevis in the Gulf of Mexico (Tominack et al., 2020).
Satellite data of oceanic and coastal waters measuring
spectral data related to the chlorophyll content (a pig-
ment produced by the algae) as well as nutrient levels and
other relevant parameters fromwater samples have proven
valuable in red tide detection and forecasting, such as in
a regional program in the Arabian Gulf for phytoplank-
ton and red tide monitoring and management (United
Arab Emirates Ministry of Climate Change and Environ-
ment [MOCCAE], 2017). Recent improvements have been
achieved in the knowledge and understanding of HAB
formation and improved spatial resolution and detection
algorithms using satellite data (Jeong et al., 2017; Liu, Xiao,
et al., 2022).
For the prediction of HABs in Western Scotland, David-

son et al. (2021) described how satellite data applied
to measuring phytoplankton density are combined with
meteorological data and monitoring data on shellfish tox-
ins produced by HABs. The resulting predictions are used
by experts to forecast the risks of toxin contamination
of cultured shellfish for the next week in Western Scot-
land, particularly the Shetland islands, where most of
the UK shellfish industry is located. Based on weekly
reports, the annual success rates for expert interpreta-
tions over a 3-year period varied between 50% and 97%
of total predictions for shellfish toxin poisoning syn-
dromes [Dinophysis-associated diarrhetic shellfish poison-
ing; Alexandrium-associated paralytic shellfish poisoning;
and Pseudo-nitzschia-associated amnesic shellfish poison-
ing],with 3%–47% false positives and 0%–3% false negatives
(Davidson et al., 2021).
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10 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

Similarly, Liao et al. (2021) achieved a good prediction
of algal growth, measured as chlorophyll, in a freshwa-
ter river and hydraulic lake using a random forest model.
Training and testing the system with data from a 12-year
period of chlorophyll measurements resulted in prediction
accuracy r consistently exceeding 0.6, which the authors
judged to be sufficient in the light of the high variability of
chlorophyll within the natural environment.
Fernandes-Salvador et al. (2021) identified machine

learning as a future method to predict the threat to
European aquaculture from HABs, with the caveat that
machine learning combines data from different informa-
tion sources with different formats and purposes, and
that therefore data consolidation is a challenge. This
also holds true for changes in toxic marine algae species
that are emerging under climate change, and the differ-
ent geographies within Europe. These authors also noted
that the current HAB prediction methods are already
sufficient for weekly reports currently used within the
sector to alert growers to HAB risks in the week ahead
(Fernandes-Salvador et al., 2021; Leadbetter et al., 2018).
Mateus et al. (2019) pointed out various issues in rela-

tion to the use of HAB forecasting for shellfish aquaculture
based on for example, monitoring data and computer
models. Although it is possible to predict the blooms
occurrence, forecasting may be more difficult for that of
biotoxins and/or consortia of toxin-producing microalgae.
If it is the case that bloomsmigrate along coast lines, cross-
ing political borders, cooperation, and exchange amongst
national authorities would be needed. In addition, the
environmental parameters underlying the predictive mod-
els may shift due to accelerating climate change (Mateus
et al., 2019).
A recent study explored the applicability of Bayesiannet-

works to the prediction of toxin concentrations in mussels
from a particular growing area in Ireland during a 5-year
period. Bayesian networks involve the use of probabilis-
tic acyclic graphs representing conditional dependencies
between the nodes (variables). An advantage of these net-
works, including for low- and middle-income countries
(LMICs), is that these models can also work with limited
data as inputs. The model was based on data that included
sea surface temperature in the coastal marine waters, the
phytoplankton densities, and toxin concentrations inmus-
sels from 8 to 9 locations other than the target area. It
was able to predict with 82% accuracy the occurrence of
toxins in mussels from a specific growing site, increas-
ing to 96% accuracy when only toxin concentrations up
to 0.16 μg/g was considered, that is, the maximum limit
posed by EU regulation (EC) No 853/2004 for okadaic acid
and its metabolites in shellfish meat (Wang, Bouzembrak,
Marvin, et al., 2022).

4.2 Mycotoxins and fungal growth

The development and use of predictive models for fun-
gal infestation and mycotoxin contamination of crops is
envisaged to have multiple impacts in sub-Saharan Africa.
In addition to enhanced food safety, increased value and
productivity of the crop may result, which will in turn
improve economic return and demandwithin variousmar-
kets. Several models are amenable for use in Africa. Keller
et al. (2021) listed 15methods formycotoxin prediction that
would be suitable for application in sub-Saharan Africa,
that is, AFLA-maize, AFLA-maize + carryover, AFLA-
pistachio, APHLIS+, APSIM+RiskModel, AVHRR-based,
CROPGRO, drought index (ARID), Maxent2, multilevel
modeling, multivariate regression, risk in storage, spatial
Poisson profile regression, and stacked Gaussian. Their
accuracies varied between 54% and 99% for 10 methods
(with the remaining ones being not predictive, future
projections, or unvalidated). These models have been vali-
dated for peanut, maize, and wheat crops and use varying
input data, including temperature, rainfall, wind speed,
soil temperature andmoisture, and crop phenology. A lim-
iting factor to their application in sub-SaharanAfrica is the
availability of African data on occurrence of aflatoxins and
associated climatological and agronomic data. Such data
would be needed to recalibrate the empirical part of the
model. The Partnership for Aflatoxin Control in Africa is
currently collecting data and establishing an information
management system, which could help provide relevant
warning (Keller et al., 2021).
Chen et al. (2022) applied a new predictive model-

ing method for microbial growth to wheat infection with
Helminthosporium and Alternaria Fungi. This was based
on the “Wiener process,” which had previously been suc-
cessfully applied to estimate the remaining useful life of
other (technical) products from different industries and
was adapted to estimate the “remaining safety life,” pre-
dicting the time left until the safety threshold will be
exceeded. In the tested scenario, the exponential growth of
mildew, that is, the hazardous fungus, during wheat stor-
agewas offset against the diminishing degree of food safety,
and the time until a safety threshold would be exceeded
for the first time was predicted. It demonstrated that the
newmodel performed better than the more traditional ter-
tiary models based on kinetic parameters. Moreover, the
prediction became more accurate as time progressed, so
the later the intervention, the more reliable were the data
underlying it (Chen et al., 2022).
Research amongst stakeholders in China showed that,

in addition to the technical implementation and improve-
ment of models for the prediction of occurrence of fun-
gal diseases (and hence mycotoxins), the understanding
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AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 11

amongst farmers, traders, and other stakeholders of the
utility of themodels used and the implications of their out-
comes is important, as is the sharing of protocols for data
gathering, sharing, and disclosure and their implementa-
tionwithout identifying and hence stigmatizing individual
farmers which mycotoxins have compromised food safety
of crop, for example (Leslie et al., 2020).

5 DISCUSSION AND SYNTHESIS

Although there are many developments in the field of food
safety early warning and emerging risk identification, sev-
eral challenges/conditions should be addressed regarding
their implementation that may be particularly demanding
for LMICs.
A prime challenge is to obtain rich and reliable

data. Appropriate infrastructure and skilled personnel are
required for collecting monitoring data. Information and
data obtained through new channels such as social media
and crowdsourcing should be processed with caution as
there is a lack of assurance of data quality. Despite its
appeal for LMICs, crowdsourcing has so far been mainly
confined to high-income countries (van Niekerk et al.,
2020). For crowdsourcing, another, general challenge is the
lack of crowd participation and loss of control, as well as
selecting the right “crowd” to ensure the reliability of infor-
mation obtained (Soon & Saguy, 2017). In addition, when
obtaining the training data for AI models, the data collec-
tion strategy should come before or simultaneously with
the development of the algorithms. This will help ensur-
ing representativeness of data in terms of demographic
and geographic considerations, amongst other things. This
allows the model to reflect real-world situations and to
avoid biased results, as well as to enhance the ethical
responsibility in AI development, for example, by ensuring
inclusiveness toward subpopulations at risk (Radanliev &
De Roure, 2022).
To enable automated data collection, good internet

and/or wireless connectivity in rural areas of LMICs is
required. For example, a survey amongst Zimbabwean
farmers showed that those using IoT had issues with con-
nectivity to the internet. In addition, a large computational
infrastructure is needed to handle the long computational
time for processing big data (Zengeya et al., 2021). The use
of IoT technology in food safety is limited and the data
produced today by IoT devices can be difficult to inter-
pret, communicate, and share due to lacking standardized
communication protocols for the food supply chain. The
facilitation of information and data sharing with develop-
ing nations would help to reduce the digital gap between
LMICs and resource rich countries. With the fast devel-
opment of big data applications in developed countries,

data privacy and security issues remain a challenge and
should be further addressed (Sapienza & Palmirani, 2018).
With the increasing digitalization of the systems, cyber
risks may emerge concurrently, whichmakes it imperative
to ensure strong cybersecurity. The possibility of cyberat-
tacks in edge devices (e.g., IoT devices and drones) and
their impacts should therefore be taken into consideration
when designing the digital system (Radanliev & De Roure,
2022).
Some of the tools developed in relation to food haz-

ard identification focus specifically on the conditions
that prevail in LMICs. For example, a recurrent neural
network-based system identifying food hazards from Ara-
bic texts in social media, technical reports, and websites
would be particularly suitable for use in the Middle East
and North Africa region (Harrag & Gueliani, 2008). Niu
et al. (2021) successfully tested a neural network model
for the prediction of carcinogenicity risk of contaminated
edible oil, which could aid risk management in countries
with less developed food safety control systems. Tools have
also been developed to work with nonstructured data from
socialmedia, such as decision-support tools that act as por-
tals to data analysis and that summarize and visualize data
to enable decision-making (Chen et al., 2020; Talari et al.,
2021).
The rapid development of modern systems fed by

numerous, real-time, and diverse data in identification of
early warning and emerging food safety risks has been
witnessed in the literature. The concepts of big data (e.g.,
text data from social media, image data), IoT, blockchain,
and WGS data have been further implemented in data
collection process, meanwhile recent breakthrough devel-
opments in machine learning and AI field have enabled
the successful application of techniques (e.g., Bayesian net-
work and neural network) on processing structured and
unstructured data sources in the food safety domain. Big
achievements have been made with moving toward more
proactive early warning systems by establishing automatic
food safety early warning systems that take into account
not only food safety-related indicators but also socioeco-
nomic indicators that are linked with drivers of change.
Accelerating climate change, dietary shifts, and new tech-
nologies may cause more emerging food safety risks and
pose threats to public health. The One Health principle
has been considered for predicting future food safety risk
and this provides a comprehensive approach that allows
for more effective early detection of health threats and
to take measures in time so that the food systems can
be more resilient to food safety risks. Although these
developments increase the feasibility and effectiveness of
early warning and emerging risk tools in practice, sev-
eral challenges/conditions should be addressed for their
implementation that may be particularly demanding for

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

LMICs. Nevertheless, through improving the capability
and capacity of national authorities and with interna-
tional organizations’ support to identify emerging food
safety risks and to provide on-time early warning signals,
the resilience of food systems to food safety risks can be
enhanced.

6 RECOMMENDATIONS

Based upon the findings in this review, a number of recom-
mendations can be made addressed to the various parties
involved in food safety governance internationally, nation-
ally, and corporately to promote the accommodation of AI
and big data in early warning and emerging food risk iden-
tification so as to enhance food systems’ resilience toward
safety threats.

6.1 International organizations

Progress has recently been made with the adoption of
revised guidelines on the paperless, digital exchange of
food safety certificates, as published by the Codex Com-
mittee on Food Import and Export Inspection and Certi-
fication Systems (Codex Alimentarius Commission, 2021).
This is also seen as an opportunity to link these electronic
documents withmodernmethods based on digital tools for
food safety inspections and management (United Nations
Economic Commission for Europe [UNECE], 2021). More-
over, international organizations such as UNIDO facili-
tate the dialogue between stakeholders with a stake in
food safety from countries worldwide by hosting events
and initiatives to share their experiences with electronic
food safety data for public health protection and trade
enhancement (United Nations Industrial Development
Organization [UNIDO], 2022). Another example is the
2021 annual Global Summit on Regulatory Science hosted
by the Global Coalition for Regulatory Science Research.
In this conference, international regulatory experts dis-
cussed the significance of AI and real-world data for the
regulatory science surrounding medicines and food safety.
These could support regulatory work in different ways,
such by improvement of the review of a product’s safety,
provision of data driving decision-making, and accessible
data that support regulation and enforcement, for exam-
ple, through improved traceability and rapid detection
of hazards. Examples include the timely identification of
trends potentially indicating risks and horizon scanning.
Real-world data have already found uses in daily practice,
whereasAI could help agencies to improve their operation.
Data standardization will be key in this regard (Thakkar
et al., 2023).

International organizations should therefore continue
to facilitate the exchange of data and collaboration
between member state authorities, for example, through
the harmonization of data formats and collection meth-
ods and the establishment of collaboration platforms and
databases. In addition, they should foster capacity build-
ing amongst LMICs and to promote the establishment of
adequate infrastructure through international aid.

6.2 National authorities

National governments have been incentivized by inter-
national organizations such as the United Nations to
implement digitalization of food safety certification of
agricultural consignments traded across borders (United
Nations Economic and Social Commission for Asia and
the Pacific [ESCAP], 2018). There are examples of national
initiatives for the establishment of platforms and harmo-
nized data requirements to improve the exchange and
sharing of food safety data amongst national stakehold-
ers, such as the U.S. Food and Drug Administration’s
Integrated Food Safety System and China’s Food Safety
Improvement Project (U.S. Food and Drug Administration
[FDA], 2023a, 2023b; World Bank, 2021). These include,
amongst others, practical instructions such as sampling
plans, good hygiene practices, procedures for routine tasks,
guidance for authorities, inspectors, and industry, and
public health alerts (from surveillance laboratory networks
to authorities, amongst authorities, and from authorities
to consumers), as well as materials for awareness rais-
ing, training, and capacity building, amongst others. The
platforms could be a place for exchange between food
safety professionals from public and business parties, food
business operators, and consumers (Corby et al., 2015).
Besides initiatives targeting food production chain actors,
it is notable that authorities like the European Commis-
sion’s Directorate-General for Research and Technology
Development foster citizen science. This would involve
consumers as source of self-measured or reported data on
the healthiness and sustainability of foods, employing AI
for the analysis of their inputs whilst at the same time
respecting their privacy. This is in line with the Commis-
sion’s policy toward co-creation and responsible research
and innovation (European Commission, 2023).
National authorities should therefore be encouraged to

continue implementing national strategies toward proac-
tive emerging risk identification as part of their national
food safety policy. Moreover, they should share data and
collaborate with other national authorities and foster data
generation and sharing within the private sectors, as well
as public private cooperation. For this, they should also
prioritize the establishment of adequate infrastructure
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AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 13

(ICT, mobile communications, and connectivity) and an
enabling environment (adequate legislation on food safety
data, data protection).

6.3 Private sector

“Industry 4.0” with the use of modern tools, such as AI,
big data, and IoT, is not only forethought to bring poten-
tial benefits in terms of food quality and safety but could
also increase operational efficiency and environmental
sustainability of food business operations (Romanello &
Veglio, 2022). Digitalization of food safety data in the food
industries has already found many applications, both for
data-driven food manufacture and catering. These appli-
cations can range from the collection of consumption
data to product traceability and recording of analysis data
from critical control points and a swath of sensors, RFID
devices, and so on from across the food production chain.
Data collection can be harmonized either prospectively
(before data are being collected) or retrospectively, that
is, analyzing data already gathered. Prospective applica-
tions are usually more extensive and require stringent
rules. Besides collection of data, also the means of data
integration, that is, “extract, transform, load” should be
harmonized. Various initiatives of EUROFIR, INFOODS,
and EFSA have provided food-related ontologies such as
FoodOn and the Meat Supply Chain Ontology (Zeb et al.,
2021). In addition, data mining tools are used to support
decisionmaking (Romanello & Veglio, 2022). Various elec-
tronic tools are available for food business operators for
their food risk management, including not only tools for
hazard identification and characterization and risk char-
acterization but also monitoring of hazards and emerging
risk identification, such as the FOODAKAI platform (Stoit-
sis et al., 2023). Data-generating tools that are already
being used in the food industries include advanced multi-
and hyperspectral imaging besides the more conventional
ultraviolet- near-infrared, and visual-wavelength spectro-
scopic sensors, as well as electronic noses and tongues.
These and other sensors can be used in combination
through IoT technology so that their signals can be pro-
cessed in real-time and transferred to repositories. This
can helps to create situational awareness and ensure com-
pliance with analysis at critical controls points under a
HACCP strategy and good transportation practices. Next-
generation sequencing is already being applied to detect
pathogens such as Campylobacter jejuni and L. monocyto-
genes. Although big data appear to remain underutilized in
the food industries, the FOSCOLLAB is a large accessible
repository of food safety monitoring data, whilst govern-
ment websites in the US, EU, and China provide details of
official monitoring (Nychas et al., 2021).

Corporate parties should therefore be encouraged to
allow openness of data for use for the public good,
to enhance traceability systems to enhance data trans-
parency, and to strengthen supply chain networks and data
sharing among supply chain partners (e.g., block chain
technology, where applicable). In addition, they should
further pursue the adoption of and compliance with inter-
national standards and collaborate with governmental
agencies and research organizations on co-development of
the tools for identifying early warning signal and emerging
food safety risks.

7 CONCLUSION

This literature review focused on existing and experimen-
tal applications of AI, big data, and IoT in the development
of early warning and emerging risk identification tools and
methods used in the food safety domain. Discussion and
synthesis have been provided on the challenges/conditions
that need to be addressed regarding the implementation
of the developments in the field of food safety early warn-
ing and emerging risk identification. AI, IoT, and big data
hold great potential as tools supporting an efficient and
effective food safetymanagement by the public and private
sectors in nations across the globe. Recommendations have
been proposed for the actors and stakeholders involved
in both national and international food safety governance
and in the industrial sectors. International cooperation and
capacity building amongst food safety authorities, as well
as access to data and tools through data standards har-
monization, collaboration with industrial sectors, and the
establishment of the proper infrastructure and platforms,
for exchange, are needed particularly in LMICs to promote
public health protection and prevent trade disruption.

AUTH OR CONTRIBUT IONS
Wenjuan Mu: Conceptualization; methodology;
writing—review and editing; writing—original draft.
Gijs Kleter: Conceptualization; methodology; writing—
review and editing; writing—original draft. Yamine
Bouzembrak: Conceptualization; methodology;
writing—review and editing; writing—original draft.
Eleonora Dupouy: Conceptualization; writing—review
and editing; writing—original draft. Lynn Frewer:
Writing—review and editing; writing—original draft.
Fadi Naser AI-Natour: Writing—review and editing.
Hans J.P. Marvin: Conceptualization; methodology;
writing—review and editing; writing—original draft.

ACKNOWLEDGMENTS
This study has received funding from the Food and Agri-
culture Organization of the United Nations (“FAO”) under

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



14 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

Letter of Agreement Number 350994. Part of the work has
been performed within PARC (Partnership for the Assess-
ment of Risks fromChemicals)whichhas received funding
from the European Union’s Horizon Europe Research
and Innovation Program under Grant Agreement No
101057014. The authors would like to acknowledge tech-
nical insights and editorial inputs provided by Markus
Lipp, PhD (FAO). FAO as the proprietor of the intellectual
property and its copyrights, grants users the royalty-free,
non-sublicensable, and nonexclusive rights to reproduce
materials from this publication under the applicable Cre-
ative Commons license terms .

CONFL ICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DISCLAIMER
The views expressed in this article are those of the authors
and do not necessarily reflect the views or policies of the
Food and Agriculture Organization of the United Nations
or any other party.

ORCID
WenjuanMu https://orcid.org/0000-0003-0166-2789
GijsA.Kleter https://orcid.org/0000-0001-7030-1149
YamineBouzembrak https://orcid.org/0000-0001-8028-
0847
H. J. P.Marvin https://orcid.org/0000-0001-8603-5965

REFERENCES
Abdelmalik, P., Peron, É., Schnitzler, J., Fontaine, J., Elfenkämper,
E., & Barboza, P. (2018). The epidemic intelligence from open
sources initiative: A collaboration to harmonize and standardize
early detection and epidemic intelligence among public health
organizations. Weekly Epidemiological Record, 93(20), 267–269.
https://apps.who.int/iris/bitstream/handle/10665/272601/WER
9320.pdf?sequence=1&isAllowed=y

Allard, M. W., Strain, E., Rand, H., Melka, D., Correll, W. A., Hintz,
L., Stevens, E., Timme, R., Lomonaco, S., Chen, Y., Musser, S. M.,
& Brown, E. W. (2019). Whole genome sequencing uses for food-
borne contamination and compliance: Discovery of an emerging
contamination event in an ice cream facility using whole genome
sequencing. Infection, Genetics and Evolution, 73, 214–220. https://
doi.org/10.1016/j.meegid.2019.04.026

Bhat, S. A., Huang, N.-F., Sofi, I. B., & Sultan, M. (2022). Agriculture-
food supply chain management based on blockchain and IoT: A
narrative on enterprise blockchain interoperability. Agriculture,
12(1), 40. https://doi.org/10.3390/agriculture12010040

Bouzembrak, Y., & Marvin, H. J. P. (2019). Impact of drivers of
change, including climatic factors, on the occurrence of chemical
food safety hazards in fruits and vegetables: A Bayesian net-
work approach. Food Control, 97, 67–76. https://doi.org/10.1016/j.
foodcont.2018.10.021

Chen, Q., Zhao, Z., Wang, X., Xiong, K., & Shi, C. (2022). Micro-
biological predictive modeling and risk analysis based on the

one-step kinetic integrated wiener process. Innovative Food Sci-
ence & Emerging Technologies, 75, 102912. https://doi.org/10.1016/
j.ifset.2021.102912

Chen, T., Ding, K., Yu, Z., Li, G., &Dong, Y. (2020). Smart supervision
for food safety in food service establishments in China: Challenges
and solutions. Journal of Food Protection, 84(6), 938–945. https://
doi.org/10.4315/jfp-20-370

Chen, Y., Zheng, W., Li, W., & Huang, Y. (2021). Large group activity
security risk assessment and risk early warning based on random
forest algorithm. Pattern Recognition Letters, 144, 1–5. https://doi.
org/10.1016/j.patrec.2021.01.008

Codex Alimentarius Commission. (2021). Guidelines for design,
production, issuance and use of generic official certificates
(Research Report No. CXG 38–20011). Alimentariusm Com-
mission, c/o Food and Agriculture Organization of the United
Nations. https://www.fao.org/fao-who-codexalimentarius/sh-
proxy/en/?lnk=1&url=

Corby, J., Klein, R., Elliott, G., &Ryan, J. (2015). Integrated food safety
system (IFSS) orientation. In J. Bradsher, G. Wojtala, C. Kaml, C.
Weiss, &D. Read (Eds.), Regulatory foundations for the food protec-
tion professional (pp. 37–54). Springer. https://doi.org/10.1007/978-
1-4939-0650-5_4

Davidson, K.,Whyte, C., Aleynik, D., Dale, A., Gontarek, S., Kurekin,
A. A., McNeill, S., Miller, P. I., Porter, M., Saxon, R., & Swan, S.
(2021). HABreports: Online early warning of harmful algal and
biotoxin risk for the Scottish shellfish and finfish aquaculture
industries. Frontiers in Marine Science, 8, 631732. https://doi.org/
10.3389/fmars.2021.631732

De-Arteaga, M., Herlands, W., Neill, D. B., & Dubrawski, A. (2018).
Machine learning for the developing world. ACM Transactions on
Management Information Systems, 9(2), 1–14. https://doi.org/10.
1145/3210548

Deng, X., Cao, S., & Horn, A. L. (2021). Emerging applications of
machine learning in food safety. Annual Review of Food Science
and Technology, 12(1), 513–538. https://doi.org/10.1146/annurev-
food-071720-024112

European Commission. (2023). Citizens’ science as an opportunity to
foster the transition to sustainable food systems. EuropeanCommis-
sion,Directorate-General Research andTechnologyDevelopment.
https://cordis.europa.eu/programme/id/HORIZON_HORIZON-
CL6-2024-FARM2FORK-01-6

Farag, M. A., Tanios, M., AlKarimy, S., Ibrahim, H., & Guirguis, H.
A. (2021). Biosensing approaches to detect potential milk contam-
inants: A comprehensive review. Food Additives & Contaminants:
Part A, 38(7), 1169–1192. https://doi.org/10.1080/19440049.2021.
1914864

Fernandes-Salvador, J. A., Davidson, K., Sourisseau, M., Revilla, M.,
Schmidt, W., Clarke, D., Miller, P. I., Arce, P., Fernández, R.,
Maman, L., Silva, A., Whyte, C., Mateo, M., Neira, P., Mateus, M.,
Ruiz-Villarreal, M., Ferrer, L., & Silke, J. (2021). Current status of
forecasting toxic harmful algae for the north-east Atlantic shell-
fish aquaculture industry. Frontiers in Marine Science, 8, 666583.
https://doi.org/10.3389/fmars.2021.666583

Food andAgricultureOrganization (FAO). (2022).Thinking about the
future of food safety, a foresight report. Food andAgricultureOrga-
nization of the United Nations. https://www.fao.org/3/cb8667en/
cb8667en.pdf

Friedlander, A., & Zoellner, C. (2020). Artificial intelligence
opportunities to improve food safety at retail. Food Protec-

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-0166-2789
https://orcid.org/0000-0003-0166-2789
https://orcid.org/0000-0001-7030-1149
https://orcid.org/0000-0001-7030-1149
https://orcid.org/0000-0001-8028-0847
https://orcid.org/0000-0001-8028-0847
https://orcid.org/0000-0001-8028-0847
https://orcid.org/0000-0001-8603-5965
https://orcid.org/0000-0001-8603-5965
https://apps.who.int/iris/bitstream/handle/10665/272601/WER9320.pdf?sequence=1isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/272601/WER9320.pdf?sequence=1isAllowed=y
https://doi.org/10.1016/j.meegid.2019.04.026
https://doi.org/10.1016/j.meegid.2019.04.026
https://doi.org/10.3390/agriculture12010040
https://doi.org/10.1016/j.foodcont.2018.10.021
https://doi.org/10.1016/j.foodcont.2018.10.021
https://doi.org/10.1016/j.ifset.2021.102912
https://doi.org/10.1016/j.ifset.2021.102912
https://doi.org/10.4315/jfp-20-370
https://doi.org/10.4315/jfp-20-370
https://doi.org/10.1016/j.patrec.2021.01.008
https://doi.org/10.1016/j.patrec.2021.01.008
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1url=
https://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1url=
https://doi.org/10.1007/978-1-4939-0650-5_4
https://doi.org/10.1007/978-1-4939-0650-5_4
https://doi.org/10.3389/fmars.2021.631732
https://doi.org/10.3389/fmars.2021.631732
https://doi.org/10.1145/3210548
https://doi.org/10.1145/3210548
https://doi.org/10.1146/annurev-food-071720-024112
https://doi.org/10.1146/annurev-food-071720-024112
https://cordis.europa.eu/programme/id/HORIZON_HORIZON-CL6-2024-FARM2FORK-01-6
https://cordis.europa.eu/programme/id/HORIZON_HORIZON-CL6-2024-FARM2FORK-01-6
https://doi.org/10.1080/19440049.2021.1914864
https://doi.org/10.1080/19440049.2021.1914864
https://doi.org/10.3389/fmars.2021.666583
https://www.fao.org/3/cb8667en/cb8667en.pdf
https://www.fao.org/3/cb8667en/cb8667en.pdf


AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 15

tion Trends, 40(4), 272–278. https://www.foodprotection.org/files/
food-protection-trends/jul-aug-20-genint-friedlander.pdf

Gavai, A. K., Bouzembrak, Y., van den Bulk, L. M., Liu, N., van
Overbeeke, L. F. D., van den Heuvel, L. J., Mol, H., &Marvin, H. J.
P. (2021). Artificial intelligence to detect unknown stimulants from
scientific literature and media reports. Food Control, 130, 108360.
https://doi.org/10.1016/j.foodcont.2021.108360

Gomez-Zavaglia, A., Mejuto, J. C., & Simal-Gandara, J. (2020).
Mitigation of emerging implications of climate change on food
production systems. Food Research International, 134, 109256.
https://doi.org/10.1016/j.foodres.2020.109256

Hadjigeorgiou, E., Clark, B., Simpson, E., Coles, D., Comber, R.,
Fischer, A. R. H.,Meijer, N., Marvin, H. J. P., & Frewer, L. J. (2022).
A systematic review into expert knowledge elicitation methods
for emerging food and feed risk identification. Food Control, 136,
108848. https://doi.org/10.1016/j.foodcont.2022.108848

Harrag, F., & Gueliani, S. (2008). Event extraction based on deep
learning in food hazard Arabic texts (Research Report No.
arXiv:2008.05014 [cs.SI]). arXiv Social and Information Networks.
https://doi.org/10.48550/arXiv.2008.05014

Hernandez San Juan, I., & González-Vaqué, L. (2020). The
blockchain technology and the regulation of traceability: The dig-
itization of food quality and safety. European Food and Feed Law
Review, 15(6), 563–570. https://www.researchgate.net/publication/
348934021_The_Blockchain_Technology_and_the_Regulation_
of_Traceability_The_Digitization_of_Food_Quality_and_Safety

Hill, A. A., Crotta, M., Wall, B., Good, L., O’Brien, S. J., & Guitian,
J. (2017). Towards an integrated food safety surveillance system: A
simulation study to explore the potential of combining genomic
and epidemiological metadata. Royal Society Open Science, 4(3),
160721. https://doi.org/10.1098/rsos.160721

Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S.,
Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon,
J. E., Kang, H. C., Kim, J. S., Yih, W., Shin, K., Jang, P. K., Ryu,
J.-H., Kim, S. Y., . . . , Kim, K. Y. (2017). Ichthyotoxic Cochlodinium
polykrikoides red tides offshore in the South Sea, Korea in 2014:
I. Temporal variations in three-dimensional distributions of red-
tide organisms and environmental factors. Algal Research, 32(2),
101–130. https://doi.org/10.4490/algae.2017.32.5.30

Jin, C., Bouzembrak, Y., Zhou, J., Liang, Q., van den Bulk, L. M.,
Gavai, A., Liu, N., van den Heuvel, L. J., Hoenderdaal, W., &
Marvin, H. J. P. (2020). Big data in food safety—A review. Current
Opinion in Food Science, 36, 24–32. https://doi.org/10.1016/j.cofs.
2020.11.006

Keller, B., Russo, T., Rembold, F., Chauhan, Y., Battilani, P., Wenndt,
A., & Connett, M. (2021). The potential for aflatoxin predictive
risk modelling in sub-Saharan Africa: A review.World Mycotoxin
Journal, 15, 101–118. Online, https://doi.org/10.3920/WMJ2021.
2683

Kong, J., Yang, C.,Wang, J.,Wang, X., Zuo,M., Jin, X., &Lin, S. (2021).
Deep-stacking network approach by multisource data mining for
hazardous risk identification in IoT-based intelligent food man-
agement systems. Computational Intelligence and Neuroscience,
2021, 1194565. https://doi.org/10.1155/2021/1194565

Kovac, J. (2019). Precision food safety: A paradigm shift in detection
and control of foodborne pathogens. mSystems, 4(3), e00164–19.
https://doi.org/10.1128/mSystems.00164-19

Leadbetter, A., Silke, J., & Cusack, C. (2018). Creating a weekly harm-
ful algal bloom bulletin. Marine Institute. https://oar.marine.ie/
handle/10793/1344

Leslie, J., Poschmaier, B., Egmond, H. V., Malachová, A., de Nijs,
M., Bagi, F., Zhou, J., Jin, Z., Wang, S., Suman, M., Schatzmayr,
G., & Krska, R. (2020). The MyToolbox EU–China partnership—
Progress and future directions inmycotoxin research andmanage-
ment. Toxins, 12(11), 712. https://doi.org/10.3390/toxins12110712

Li, G., Liu, Q., & Shang, X. (2021). Risk analysis and early warning
of food safety testing based on big data. In J. H. Abawajy, K.-K.
R. Choo, Z. Xu, &M. Atiquzzaman (Eds.), 2020 International con-
ference on applications and techniques in cyber intelligence (ATCI
2020) (pp. 417–422). Springer International Publishing. https://
doi.org/10.1007/978-3-030-53980-1_61

Liao, Z., Zang, N., Wang, X., Li, C., & Liu, Q. (2021). Machine
learning-based prediction of chlorophyll-a variations in receiving
reservoir of world’s largest water transfer project—A case study in
theMiyun Reservoir, North China.Water, 13(17), 2406. https://doi.
org/10.3390/w13172406

Lincoln, S., Buckley, P., Howes, E. L., Maltby, K. M., Pinnegar, J. K.,
Ali, T. S., Alosairi, Y., Al-Ragum, A., Baglee, A., Balmes, C. O.,
Hamadou, R. B., Burt, J. A., Claereboudt, M., Glavan, J., Mamiit,
R. J., Naser, H. A., Sedighi, O., Shokri, M. R., Shuhaibar, B., . . . , Le
Quesne, W. J. F. (2021). A regional review of marine and coastal
impacts of climate change on the ROPME sea area. Sustainability,
13(24), 13810. https://doi.org/10.3390/su132413810

Liu, N., Bouzembrak, Y., van den Bulk, L. M., Gavai, A., van den
Heuvel, L. J., &Marvin, H. J. P. (2022). Automated food safety early
warning system in the dairy supply chain usingmachine learning.
Food Control, 136, 108872. https://doi.org/10.1016/j.foodcont.2022.
108872

Liu, R., Xiao, Y., Ma, Y., Cui, T., & An, J. (2022). Red tide detection
based on high spatial resolution broad band optical satellite data.
ISPRS Journal of Photogrammetry and Remote Sensing, 184, 131–
147. https://doi.org/10.1016/j.isprsjprs.2021.12.009

Liu, T., & Hu, A. (2017). Model of combined transport of perishable
foodstuffs and safety inspection based on data mining. Food and
Nutrition Sciences, 8(7), 760–777. https://doi.org/10.4236/fns.2017.
87054

Liu, Z. (2021). Construction of urban agricultural health informatics
safety supervision system based on imaging and deep learning.
Concurrency and Computation: Practice and Experience, 33(12),
e5834. https://doi.org/10.1002/cpe.5834

Liu, Z., Wang, S., Zhang, Y., Feng, Y., Liu, J., & Zhu, H. (2023). Arti-
ficial intelligence in food safety: A decade review and bibliomet-
ric analysis. Foods, 12(6), 1242. https://doi.org/10.3390/foods1206
1242

Lucas Luijckx, B.N., van deBrug, F. J., Leeman,W.R., van derVossen,
J. M. B. M., & Cnossen, H. J. (2016). Testing a text mining tool for
emerging risk identification.EFSASupporting Publications, 13(12),
1154E. https://doi.org/10.2903/sp.efsa.2016.EN-1154

Maksimovic, M., Omanovic-Miklicanin, E., & Badnjevic, A. (2019).
Nanofood and internet of nano things. Springer. https://doi.org/
10.1007/978-3-030-15054-9

Manning, L., & Kowalska, A. (2021). The role of technology in cri-
sis management and product recall in food supply chains. In
L. Manning (Ed.), Developing smart agri—Food supply chains:
Using technology to improve safety and quality (pp. 239–260).
Burleigh-Dodds. https://doi.org/10.19103/AS.2021.0097.08

Marvin, H. J. P., Kleter, G. A., Van der Fels-Klerx, H. J., Noordam,
M. Y., Franz, E., Willems, D. J. M., & Boxall, A. (2013). Proactive
systems for early warning of potential impacts of natural disasters

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.foodprotection.org/files/food-protection-trends/jul-aug-20-genint-friedlander.pdf
https://www.foodprotection.org/files/food-protection-trends/jul-aug-20-genint-friedlander.pdf
https://doi.org/10.1016/j.foodcont.2021.108360
https://doi.org/10.1016/j.foodres.2020.109256
https://doi.org/10.1016/j.foodcont.2022.108848
https://doi.org/10.48550/arXiv.2008.05014
https://www.researchgate.net/publication/348934021_The_Blockchain_Technology_and_the_Regulation_of_Traceability_The_Digitization_of_Food_Quality_and_Safety
https://www.researchgate.net/publication/348934021_The_Blockchain_Technology_and_the_Regulation_of_Traceability_The_Digitization_of_Food_Quality_and_Safety
https://www.researchgate.net/publication/348934021_The_Blockchain_Technology_and_the_Regulation_of_Traceability_The_Digitization_of_Food_Quality_and_Safety
https://doi.org/10.1098/rsos.160721
https://doi.org/10.4490/algae.2017.32.5.30
https://doi.org/10.1016/j.cofs.2020.11.006
https://doi.org/10.1016/j.cofs.2020.11.006
https://doi.org/10.3920/WMJ2021.2683
https://doi.org/10.3920/WMJ2021.2683
https://doi.org/10.1155/2021/1194565
https://doi.org/10.1128/mSystems.00164-19
https://oar.marine.ie/handle/10793/1344
https://oar.marine.ie/handle/10793/1344
https://doi.org/10.3390/toxins12110712
https://doi.org/10.1007/978-3-030-53980-1_61
https://doi.org/10.1007/978-3-030-53980-1_61
https://doi.org/10.3390/w13172406
https://doi.org/10.3390/w13172406
https://doi.org/10.3390/su132413810
https://doi.org/10.1016/j.foodcont.2022.108872
https://doi.org/10.1016/j.foodcont.2022.108872
https://doi.org/10.1016/j.isprsjprs.2021.12.009
https://doi.org/10.4236/fns.2017.87054
https://doi.org/10.4236/fns.2017.87054
https://doi.org/10.1002/cpe.5834
https://doi.org/10.3390/foods12061242
https://doi.org/10.3390/foods12061242
https://doi.org/10.2903/sp.efsa.2016.EN-1154
https://doi.org/10.1007/978-3-030-15054-9
https://doi.org/10.1007/978-3-030-15054-9
https://doi.org/10.19103/AS.2021.0097.08


16 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

on food safety: Climate-change-induced extreme events as case
in point. Food Control, 34(2), 444–456. https://doi.org/10.1016/j.
foodcont.2013.04.037

Mateus, M., Fernandes, J., Revilla, M., Ferrer, L., Villarreal, M. R.,
Miller, P., Schmidt, W., Maguire, J., Silva, A., & Pinto, L. (2019).
Early warning systems for shellfish safety: The pivotal role of
computational science. In J. M. F. Rodrigues, P. J. S. Cardoso, J.
Monteiro, R. Lam, V. V. Krzhizhanovskaya, M. H. Lees, J. J. Don-
garra, & P. M. A. Sloot (Eds.), Computational science—ICCS 2019,
19th international conference, Faro, Portugal, June 12–14, 2019, pro-
ceedings, Part IV (pp. 361–375). Springer International Publishing.
https://doi.org/10.1007/978-3-030-22747-0_28

Miller, B. (2023). How Artificial Intelligence in food safety will affect
food processors. SafetyChain. https://blog.safetychain.com/ai-in-
food-safety

Nastasijević, I., & VeskovićMoračanin, S. (2021). Digitalization in the
meat chain. Acta Agriculturae Serbica, 26(52), 183–193. https://doi.
org/10.5937/AASer2152183N

Neethirajan, S., Ragavan, V.,Weng, X., &Chand, R. (2018). Biosensors
for sustainable food engineering: Challenges and perspectives.
Biosensors, 8(1), 23. https://doi.org/10.3390/bios8010023

van Niekerk, L., Ongkeko, A., Hounsell, R. A., Msiska, B. K.,
Mathanga, D. P., Mothe, J., Juban, N., Awor, P., & Balabanova, D.
(2020). Crowdsourcing to identify social innovation initiatives in
health in low- and middle-income countries. Infectious Diseases of
Poverty, 9(1), 138. https://doi.org/10.1186/s40249-020-00751-x

Niu, B., Zhang, H., Zhou, G., Zhang, S., Yang, Y., Deng, X., & Chen,
Q. (2021). Safety risk assessment and early warning of chemical
contamination in vegetable oil. Food Control, 125, 107970. https://
doi.org/10.1016/j.foodcont.2021.107970

Noteborn, H. P. J. M., Mengelers, M., Ooms, W., Callenbach, L.,
Marvin, H., Kleter, G., Koopmans,M., Duizer, E., Bos, P.,Waldner,
H., Franzen, H., Stoffels, B., Hertel, R., Epp, A., Wotherspoon,
A., Boutrif, E., van der Wal, L., Pineiro, M., Robson, M.,
. . . Bruschke, C. (2006). Report of the EFSA service contract
EFSA/SC/tender/01/2004 “forming a global system for identi-
fying food-related emerging risks—EMRISK”. EFSA Supporting
Publications, 2, 224R. https://doi.org/10.2903/j.efsa.2005.224r

Nychas, G.-J., Sims, E., Tsakanikas, P., & Mohareb, F. (2021). Data
science in the food industry. Annual Review of Biomedical Data
Science, 4(1), 341–367. https://doi.org/10.1146/annurev-biodatasci-
020221-123602

O’Brien, J. (2019). Opportunities for more effective and efficient micro-
biological monitoring in food production operations. Creme Global.
https://www.cremeglobal.com/wp-content/uploads/2019/12/
White-Paper-Opportunities-for-More-Effective-and-Efficient-
Microbiological-Monitoring-in-Food-Production-Operations.pdf

Pérez Santín, E., Rodríguez Solana, R., González García, M., García
Suárez, M. D. M., Blanco Díaz, G. D., Cima Cabal, M. D., Moreno
Rojas, J.M., & López Sánchez, J. I. (2021). Toxicity prediction based
on artificial intelligence: A multidisciplinary overview. WIREs
Computational Molecular Science, 11(5), e1516. https://doi.org/10.
1002/wcms.1516

Qian, C., Murphy, S. I., Orsi, R. H., &Wiedmann,M. (2023). How can
AI help improve food safety? Annual Review of Food Science and
Technology, 14(1), 517–538. https://doi.org/10.1146/annurev-food-
060721-013815

Radanliev, P., & De Roure, D. (2022). Advancing the cybersecurity
of the healthcare system with self-optimising and self-adaptative

artificial intelligence (part 2). Health and Technology, 12(5), 923–
929. https://doi.org/10.1007/s12553-022-00691-6

Radanliev, P., &DeRoure, D. (2023). New and emerging forms of data
and technologies: Literature and bibliometric review.Multimedia
Tools and Applications, 82(2), 2887–2911. https://doi.org/10.1007/
s11042-022-13451-5

Ren, Q.-S., Fang, K., Yang, X.-T., & Han, J.-W. (2022). Ensuring the
quality of meat in cold chain logistics: A comprehensive review.
Trends in Food Science & Technology, 119, 133–151. https://doi.org/
10.1016/j.tifs.2021.12.006

Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A., & Anderson, D.
M. (2010). The catastrophic 2008–2009 red tide in the Arabian gulf
region, with observations on the identification and phylogeny of
the fish-killing dinoflagellate Cochlodinium polykrikoides. Harm-
ful Algae, 9(2), 163–172. https://doi.org/10.1016/j.hal.2009.08.013

Romanello, R., & Veglio, V. (2022). Industry 4.0 in food processing:
Drivers, challenges and outcomes. British Food Journal, 124(13),
375–390. https://doi.org/10.1108/BFJ-09-2021-1056

Sapienza, S., & Palmirani, M. (2018). Emerging data governance
issues in big data applications for food safety. In A. Kő, & E.
Francesconi (Eds.), Electronic government and the information sys-
tems perspective 2018 (EGOVIS 2018) (pp. 221–230). Springer Inter-
national Publishing. https://doi.org/10.1007/978-3-319-98349-3_17

Saxena, V., & Gautam, A. (2021). Machine learning and artifi-
cial intelligence in food industry. International Research Journal
of Modernization in Engineering Technology and Science, 3(9),
585–603. https://www.irjmets.com/uploadedfiles/paper/volume_
3/issue_9_september_2021/16137/final/fin_irjmets1631603841.pdf

Shim, J., Ye,M.-J., Lim, J.-H., Kwon, J.-N., &Kim, J. B. (2021). Red tide
events and seasonal variations in the partial pressure of CO2 and
related parameters in shellfish-farming bays, Southeastern coast
of Korea. Frontiers inMarine Science, 8, 738472. https://doi.org/10.
3389/fmars.2021.738472

Singh, A., Gutub, A., Nayyar, A., & Khan, M. K. (2022). Redefining
food safety traceability system through blockchain: Findings, chal-
lenges and open issues. Multimedia Tools and Applications, 82,
21243–21277. https://doi.org/10.1007/s11042-022-14006-4

Soon, J. M. (2022). Food fraud countermeasures and consumers: A
future agenda. In R. Bhat (Ed.), Future foods (pp. 597–611). Aca-
demic Press. https://doi.org/10.1016/B978-0-323-91001-9.00027-X

Soon, J. M., & Saguy, I. S. (2017). Crowdsourcing: A new concep-
tual view for food safety and quality. Trends in Food Science &
Technology, 66, 63–72. https://doi.org/10.1016/j.tifs.2017.05.013

Stoitsis, G., Papakonstantinou, M., Karvounis, M., & Manouselis, N.
(2023). The role of big data and artificial intelligence in food risk
assessment and prediction. In M. E. Knowles, L. E. Anelich, A.
R. Boobis, & B. Popping (Eds.), Present knowledge in food safety
(pp. 1032–1044). Academic Press. https://doi.org/10.1016/B978-0-
12-819470-6.00041-X

Talari, G., Cummins, E., McNamara, C., & O’Brien, J. (2021). State
of the art review of big data and web-based decision support sys-
tems (DSS) for food safety risk assessment with respect to climate
change.Trends in Food Science&Technology, 126, 192–204. https://
doi.org/10.1016/j.tifs.2021.08.032

Tao, D., Yang, P., & Feng, H. (2020). Utilization of text mining as a big
data analysis tool for food science and nutrition. Comprehensive
Reviews in Food Science and Food Safety, 19(2), 875–894. https://
doi.org/10.1111/1541-4337.12540

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1016/j.foodcont.2013.04.037
https://doi.org/10.1016/j.foodcont.2013.04.037
https://doi.org/10.1007/978-3-030-22747-0_28
https://blog.safetychain.com/ai-in-food-safety
https://blog.safetychain.com/ai-in-food-safety
https://doi.org/10.5937/AASer2152183N
https://doi.org/10.5937/AASer2152183N
https://doi.org/10.3390/bios8010023
https://doi.org/10.1186/s40249-020-00751-x
https://doi.org/10.1016/j.foodcont.2021.107970
https://doi.org/10.1016/j.foodcont.2021.107970
https://doi.org/10.2903/j.efsa.2005.224r
https://doi.org/10.1146/annurev-biodatasci-020221-123602
https://doi.org/10.1146/annurev-biodatasci-020221-123602
https://www.cremeglobal.com/wp-content/uploads/2019/12/White-Paper-Opportunities-for-More-Effective-and-Efficient-Microbiological-Monitoring-in-Food-Production-Operations.pdf
https://www.cremeglobal.com/wp-content/uploads/2019/12/White-Paper-Opportunities-for-More-Effective-and-Efficient-Microbiological-Monitoring-in-Food-Production-Operations.pdf
https://www.cremeglobal.com/wp-content/uploads/2019/12/White-Paper-Opportunities-for-More-Effective-and-Efficient-Microbiological-Monitoring-in-Food-Production-Operations.pdf
https://doi.org/10.1002/wcms.1516
https://doi.org/10.1002/wcms.1516
https://doi.org/10.1146/annurev-food-060721-013815
https://doi.org/10.1146/annurev-food-060721-013815
https://doi.org/10.1007/s12553-022-00691-6
https://doi.org/10.1007/s11042-022-13451-5
https://doi.org/10.1007/s11042-022-13451-5
https://doi.org/10.1016/j.tifs.2021.12.006
https://doi.org/10.1016/j.tifs.2021.12.006
https://doi.org/10.1016/j.hal.2009.08.013
https://doi.org/10.1108/BFJ-09-2021-1056
https://doi.org/10.1007/978-3-319-98349-3_17
https://www.irjmets.com/uploadedfiles/paper/volume_3/issue_9_september_2021/16137/final/fin_irjmets1631603841.pdf
https://www.irjmets.com/uploadedfiles/paper/volume_3/issue_9_september_2021/16137/final/fin_irjmets1631603841.pdf
https://doi.org/10.3389/fmars.2021.738472
https://doi.org/10.3389/fmars.2021.738472
https://doi.org/10.1007/s11042-022-14006-4
https://doi.org/10.1016/B978-0-323-91001-9.00027-X
https://doi.org/10.1016/j.tifs.2017.05.013
https://doi.org/10.1016/B978-0-12-819470-6.00041-X
https://doi.org/10.1016/B978-0-12-819470-6.00041-X
https://doi.org/10.1016/j.tifs.2021.08.032
https://doi.org/10.1016/j.tifs.2021.08.032
https://doi.org/10.1111/1541-4337.12540
https://doi.org/10.1111/1541-4337.12540


AI, BIG DATA, & IOT ENHANCING FOOD SAFETY 17

Tao, D., Zhang, D., Hu, R., Rundensteiner, E., & Feng, H. (2021).
Crowdsourcing and machine learning approaches for extract-
ing entities indicating potential foodborne outbreaks from social
media. Scientific Reports, 11, 21678. https://doi.org/10.1038/s41598-
021-00766-w

Tekin, K., Yurdakok-Dikmen, B., Kanca, H., & Guatteo, R. (2021).
Precision livestock farming technologies: Novel direction of infor-
mation flow. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 68,
193–212. https://doi.org/10.33988/auvfd.837485

Thakkar, S., Slikker, W., Yiannas, F., Silva, P., Blais, B., Chng, K. R.,
Liu, Z., Adholeya, A., Pappalardo, F., Soares, M. d. L. C., Beeler,
P. E., Whelan, M., Roberts, R., Borlak, J., Hugas, M., Torrecilla-
Salinas, C., Girard, P., Diamond, M. C., Verloo, D., . . . , Tong, W.
(2023). Artificial intelligence and real-world data for drug and
food safety—A regulatory science perspective. Regulatory Toxicol-
ogy and Pharmacology, 140, 105388. https://doi.org/10.1016/j.yrtph.
2023.105388

The European Food Safety Authority (EFSA), Maggiore, A., Afonso,
A., Barrucci, F., & Sanctis, G. D. (2020). Climate change as a driver
of emerging risks for food and feed safety, plant, animal health and
nutritional quality. EFSA Supporting Publications, 17(6), 1881E.
https://doi.org/10.2903/sp.efsa.2020.EN-1881

The European Food Safety Authority (EFSA). (2023). EFSA’s
activities on emerging risks in 2020. EFSA Supporting Pub-
lications, 20(6), 8024E. https://doi.org/10.2903/sp.efsa.2023.EN-
8024

The Intergovernmental Oceanographic Commission of UNESCO
(IOC UNESCO). (2022). IOC HAB programme. Intergovernmen-
talOceanographicCommissionUNESCO. https://hab.ioc-unesco.
org/

Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., &
Frank, J.M. (2010). Climate change and food safety:A review.Food
Research International, 43(7), 1745–1765. https://doi.org/10.1016/j.
foodres.2010.07.003

Tominack, S. A., Coffey, K. Z., Yoskowitz, D., Sutton, G., & Wetz, M.
S. (2020). An assessment of trends in the frequency and duration
of Karenia brevis red tide blooms on the South Texas coast (west-
ern Gulf of Mexico). PLoS ONE, 15(9), e0239309. https://doi.org/
10.1371/journal.pone.0239309

Tzanidakis, C., Simitzis, P., Arvanitis, K., & Panagakis, P. (2021). An
overview of the current trends in precision pig farming technolo-
gies. Livestock Science, 249, 104530. https://doi.org/10.1016/j.livsci.
2021.104530

U.S. Food and Drug Administration (FDA). (2023a). Alliance to
support integrated food safety system (IFSS) activities. U.S. Food
and Drug Administration. https://www.fda.gov/federal-state-
local-tribal-and-territorial-officials/grants-and-cooperative-
agreements/alliance-support-integrated-food-safety-system-ifss-
activities

U.S. Food and Drug Administration (FDA). (2023b). Building
an integrated information technology infrastructure for state
regulatory programs. U.S. Food and Drug Administration.
https://www.fda.gov/federal-state-local-tribal-and-territorial-
officials/grants-and-cooperative-agreements/building-
integrated-information-technology-infrastructure-state-
regulatory-programs

U.S. National Office forHarmful Algal Blooms. (2019). Prediction and
early warning. Woods Hole Oceanographic Institution. https://
hab.whoi.edu/response/prediction-and-early-warning/

United Arab Emirates Ministry of Climate Change and Envi-
ronment (MOCCAE). (2017). Ministry of Climate Change and
Environment Monitors Recurrence of Red Tide in local waters.
United Arab Emirates Ministry of Climate Change and Environ-
ment. https://www.moccae.gov.ae/en/media-center/news/7/4/
2017/ministry-of-climate-change-and-environment-monitors-
recurrence-of-red-tide-in-local-waters.aspx#page=1

United Nations Economic and Social Commission for Asia and
the Pacific (ESCAP). (2018). Facilitating compliance to food
safety and quality for cross-border trade. United Nations
Economic and Social Commission for Asia and the Pacific.
https://repository.unescap.org/rest/bitstreams/a89910be-ee26-
4985-9946-e5b0d327ccd4/retrieve

United Nations Economic Commission for Europe (UNECE).
(2021). UN/CEFACT standards lay foundation for paper-
less exchange of certificates for USD 1.8 trillion food
trade. United Nations Economic Commission for Europe.
https://unece.org/sustainable-development/press/uncefact-
standards-lay-foundation-paperless-exchange-certificates-usd

United Nations Industrial Development Organization (UNIDO).
(2022). Global knowledge sharing experience on data during the
Vienna food safety forum. United Nations Industrial Development
Organization. https://www.unido.org/news/global-knowledge-
sharing-experience-data-during-vienna-food-safety-forum

Vimalajeewa, D., Thakur, S., Breslin, J., Berry, D. P., &
Balasubramaniam, S. (2020). Block chain and internet of nano–
things for optimizing chemical sensing in smart farming (Research
Report No. arXiv:2010.01941 [eess.SP]). arXiv Signal Processing
(eess.SP). https://doi.org/10.48550/arXiv.2010.01941

Wang, X., Bouzembrak, Y., Lansink, A. O., & van der Fels-Klerx,
H. J. (2022). Application of machine learning to the monitoring
and prediction of food safety: A review. Comprehensive Reviews
in Food Science and Food Safety, 21(1), 416–434. https://doi.org/10.
1111/1541-4337.12868

Wang, X., Bouzembrak, Y., Marvin, H. J. P., Clarke, D., & Butler, F.
(2022). Bayesian networksmodeling of diarrhetic shellfish poison-
ing in Mytilus edulis harvested in Bantry Bay, Ireland. Harmful
Algae, 112, 102171. https://doi.org/10.1016/j.hal.2021.102171

Wang, Y., Yang, B., Yang, H., Hao, M., Zhang, C., & Tao, H. (2021).
Overview of fusion technology in food safety big data. In S.
Islam, & W. Liu (Eds.), 2021 2Nd international conference on new
energy technology and industrial development (NETID 2021) Nan-
jing, China (292th ed., pp. 02012). EDP Sciences. https://doi.org/
10.1051/e3sconf/202129202012

Wells, M. L., Karlson, B., Wulff, A., Kudela, R., Trick, C., Asnaghi, V.,
Berdalet, E., Cochlan,W.,Davidson,K., DeRijcke,M., Dutkiewicz,
S., Hallegraeff, G., Flynn, K. J., Legrand, C., Paerl, H., Silke, J.,
Suikkanen, S., Thompson, P., & Trainer, V. L. (2020). Future HAB
science: Directions and challenges in a changing climate.Harmful
Algae, 91, 101632. https://doi.org/10.1016/j.hal.2019.101632

World Bank. (2021). International bank for reconstruction and
development project appraisal document on a proposed loan
in the amount of US$400 million to the Peoples’ Repub-
lic of China for a China food safety improvement project.
World Bank. https://documents1.worldbank.org/curated/en/
958471616983319964/pdf/China-Food-Safety-Improvement-
Project.pdf

World Health Organization (WHO). (2022). WHO global strategy
for food safety 2022–2030. Towards stronger food safety systems

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1038/s41598-021-00766-w
https://doi.org/10.1038/s41598-021-00766-w
https://doi.org/10.33988/auvfd.837485
https://doi.org/10.1016/j.yrtph.2023.105388
https://doi.org/10.1016/j.yrtph.2023.105388
https://doi.org/10.2903/sp.efsa.2020.EN-1881
https://doi.org/10.2903/sp.efsa.2023.EN-8024
https://doi.org/10.2903/sp.efsa.2023.EN-8024
https://hab.ioc-unesco.org/
https://hab.ioc-unesco.org/
https://doi.org/10.1016/j.foodres.2010.07.003
https://doi.org/10.1016/j.foodres.2010.07.003
https://doi.org/10.1371/journal.pone.0239309
https://doi.org/10.1371/journal.pone.0239309
https://doi.org/10.1016/j.livsci.2021.104530
https://doi.org/10.1016/j.livsci.2021.104530
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/alliance-support-integrated-food-safety-system-ifss-activities
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/alliance-support-integrated-food-safety-system-ifss-activities
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/alliance-support-integrated-food-safety-system-ifss-activities
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/alliance-support-integrated-food-safety-system-ifss-activities
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/building-integrated-information-technology-infrastructure-state-regulatory-programs
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/building-integrated-information-technology-infrastructure-state-regulatory-programs
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/building-integrated-information-technology-infrastructure-state-regulatory-programs
https://www.fda.gov/federal-state-local-tribal-and-territorial-officials/grants-and-cooperative-agreements/building-integrated-information-technology-infrastructure-state-regulatory-programs
https://hab.whoi.edu/response/prediction-and-early-warning/
https://hab.whoi.edu/response/prediction-and-early-warning/
https://www.moccae.gov.ae/en/media-center/news/7/4/2017/ministry-of-climate-change-and-environment-monitors-recurrence-of-red-tide-in-local-waters.aspx#page=1
https://www.moccae.gov.ae/en/media-center/news/7/4/2017/ministry-of-climate-change-and-environment-monitors-recurrence-of-red-tide-in-local-waters.aspx#page=1
https://www.moccae.gov.ae/en/media-center/news/7/4/2017/ministry-of-climate-change-and-environment-monitors-recurrence-of-red-tide-in-local-waters.aspx#page=1
https://repository.unescap.org/rest/bitstreams/a89910be-ee26-4985-9946-e5b0d327ccd4/retrieve
https://repository.unescap.org/rest/bitstreams/a89910be-ee26-4985-9946-e5b0d327ccd4/retrieve
https://unece.org/sustainable-development/press/uncefact-standards-lay-foundation-paperless-exchange-certificates-usd
https://unece.org/sustainable-development/press/uncefact-standards-lay-foundation-paperless-exchange-certificates-usd
https://www.unido.org/news/global-knowledge-sharing-experience-data-during-vienna-food-safety-forum
https://www.unido.org/news/global-knowledge-sharing-experience-data-during-vienna-food-safety-forum
https://doi.org/10.48550/arXiv.2010.01941
https://doi.org/10.1111/1541-4337.12868
https://doi.org/10.1111/1541-4337.12868
https://doi.org/10.1016/j.hal.2021.102171
https://doi.org/10.1051/e3sconf/202129202012
https://doi.org/10.1051/e3sconf/202129202012
https://doi.org/10.1016/j.hal.2019.101632
https://documents1.worldbank.org/curated/en/958471616983319964/pdf/China-Food-Safety-Improvement-Project.pdf
https://documents1.worldbank.org/curated/en/958471616983319964/pdf/China-Food-Safety-Improvement-Project.pdf
https://documents1.worldbank.org/curated/en/958471616983319964/pdf/China-Food-Safety-Improvement-Project.pdf


18 AI, BIG DATA, & IOT ENHANCING FOOD SAFETY

and global cooperation. World Health Organization. https://www.
who.int/publications/i/item/9789240057685

Wu, L.-Y., & Weng, S.-S. (2021). Ensemble learning models for food
safety risk prediction. Sustainability, 13(21), 12291. https://doi.org/
10.3390/su132112291

Xu, B., Li, J., & Wang, Y. (2013). A pork traceability framework based
on internet of things. In S. Zhou, & Z. Wu (Eds.), Social media
retrieval andmining: ADMA2012workshops, SNAM2012 and SMR
2012, Nanjing, China, December 15–18, 2012 (pp. 159–166). Springer.
https://doi.org/10.1007/978-3-642-41629-3_15

Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging:
Concepts and applications. Journal of Food Science, 70(1), R1–R10.
https://doi.org/10.1111/j.1365-2621.2005.tb09052.x

Yang, W., & Liu, Y. (2021). Application of data mining technology
in the early warning of safety risks. In Proceedings of 2021 2nd
international conference on artificial intelligence and information
systems (ICAIIS 2021), Chongqing, China, May 28–30, 2021. Asso-
ciation for Computing Machinery. 1–10. https://doi.org/10.1145/
3469213.3470313

Zeb, A., Soininen, J.-P., & Sozer, N. (2021). Data harmonisation as a
key to enable digitalisation of the food sector: A review. Food and
Bioproducts Processing, 127, 360–370. https://doi.org/10.1016/j.fbp.
2021.02.005

Zengeya, T., Sambo, P., & Mabika, N. (2021). The adoption of the
internet of things for smart agriculture In Zimbabwe. In D. C.
Wyld, & D. Nagamalai (Eds.), 2Nd international conference on
machine learning, IOT and blockchain (MLIOB 2021), Chennai,
India, August 21–22, 2021 (Vol. 11. pp. 99–106). AIRCC. https://doi.
org/10.5121/csit.2021.111208

Zhang, M., Wang, X., Feng, H., Huang, Q., Xiao, X., & Zhang, X.
(2021). Wearable internet of things enabled precision livestock

farming in smart farms: A review of technical solutions for pre-
cise perception, biocompatibility, and sustainability monitoring.
Journal of Cleaner Production, 312, 127712. https://doi.org/10.1016/
j.jclepro.2021.127712

Zhou, L., Zhang, C., Liu, F., Qiu, Z., & He, Y. (2019). Application of
deep learning in food: A review. Comprehensive Reviews in Food
Science and Food Safety, 18(6), 1793–1811. https://doi.org/10.1111/
1541-4337.12492

SUPPORT ING INFORMATION
Additional supporting information can be found online
in the Supporting Information section at the end of this
article.

How to cite this article: Mu, W., Kleter, G. A.,
Bouzembrak, Y., Dupouy, E., Frewer, L. J., Radwan
Al Natour, F. N., & Marvin, H. J. P. (2024). Making
food systems more resilient to food safety risks by
including artificial intelligence, big data, and
internet of things into food safety early warning and
emerging risk identification tools. Comprehensive
Reviews in Food Science and Food Safety, 23, 1–18.
https://doi.org/10.1111/1541-4337.13296

 15414337, 2024, 1, D
ow

nloaded from
 https://ift.onlinelibrary.w

iley.com
/doi/10.1111/1541-4337.13296 by C

ochraneA
rgentina, W

iley O
nline L

ibrary on [30/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://www.who.int/publications/i/item/9789240057685
https://www.who.int/publications/i/item/9789240057685
https://doi.org/10.3390/su132112291
https://doi.org/10.3390/su132112291
https://doi.org/10.1007/978-3-642-41629-3_15
https://doi.org/10.1111/j.1365-2621.2005.tb09052.x
https://doi.org/10.1145/3469213.3470313
https://doi.org/10.1145/3469213.3470313
https://doi.org/10.1016/j.fbp.2021.02.005
https://doi.org/10.1016/j.fbp.2021.02.005
https://doi.org/10.5121/csit.2021.111208
https://doi.org/10.5121/csit.2021.111208
https://doi.org/10.1016/j.jclepro.2021.127712
https://doi.org/10.1016/j.jclepro.2021.127712
https://doi.org/10.1111/1541-4337.12492
https://doi.org/10.1111/1541-4337.12492
https://doi.org/10.1111/1541-4337.13296

	Making food systems more resilient to food safety risks by including artificial intelligence, big data, and internet of things into food safety early warning and emerging risk identification tools
	Abstract
	1 | BACKGROUND
	2 | EMERGING FOOD SAFETY RISKS, AND THE DRIVERS AND INFLUENTIAL SECTORS DRIVING THEIR EMERGENCE
	3 | MODERN SYSTEMS FED BY NUMEROUS, REAL-TIME, AND DIVERSE DATA
	3.1 | Data sources
	3.1.1 | Digital devices
	3.1.2 | Unstructured data
	3.1.3 | Blockchain
	3.1.4 | Whole-genome sequencing data

	3.2 | Data processing: text mining and artificial intelligence

	4 | CASE STUDIES ILLUSTRATING THE POTENTIAL CONTRIBUTIONS OF BIG DATA AND AI (MACHINE LEARNING) TO EARLY WARNING AGAINST CLIMATE-CHANGE-RELATED FOOD SAFETY HAZARDS
	4.1 | Harmful algal blooms
	4.2 | Mycotoxins and fungal growth

	5 | DISCUSSION AND SYNTHESIS
	6 | RECOMMENDATIONS
	6.1 | International organizations
	6.2 | National authorities
	6.3 | Private sector

	7 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	DISCLAIMER
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


