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ARTICLE INFO ABSTRACT

Keywords: The initial microbial contamination of carcasses during slaughtering adversely affects spoilage and shelf life
Carcass and is of global concern for food safety and meat quality. This study evaluated the hygiene and quality using
Cattle

the prevalence of foodborne pathogens and the level of indicator bacteria on 200 carcasses, collecting 10 from
each of 20 cattle slaughterhouses in Korea. The distribution of aerobic bacterial count in carcasses was signif-
icantly highest at 2.0-3.0 log;o CFU/cm? (34.1%), whereas the Escherichia coli count was significantly highest
at under 1.0 log;o CFU/cm? (94.0%) (P < 0.05). Clostridium perfringens was most prevalent (60.0% of slaugh-
terhouses; 17.5% of carcasses), followed by Yersinia enterocolitica (30.0% of slaughterhouses; 6.5% of car-
casses), Staphylococcus aureus (15.0% of slaughterhouses; 4.0% of carcasses), Listeria monocytogenes 1/2a
(5.0% of slaughterhouses; 1.0% of carcasses), Salmonella enterica subsp. enterica serovar Infantis (5.0% of
slaughterhouses; 1.0% of carcasses), and Shiga toxin-producing E. coli 0:66 (5.0% of slaughterhouses; 0.5%
of carcasses). Although 28 C. perfringens isolates from 11 slaughterhouses were divided into 21 pulsotypes,
all isolates showed the same toxinotype as type A and only carried the cpa. Interestingly, 83.3% of isolates from
two slaughterhouses located in the same province showed resistance to tetracycline. Furthermore, 13 Y. ente-
rocolitica isolates from six slaughterhouses were divided into seven pulsotypes that were divided into biotypes
1A and 2 and serotypes O:5 and 0:8, except for isolates that could not be typed. Twelve (92.3%) isolates only
carried ystB, but one (7.7%) isolate carried ail and ystA. Moreover, 46.2% of Y. enterocolitica isolates showed
multidrug resistance against ampicillin, cefoxitin, and amoxicillin/clavulanic acid. This study supports the
need for continuous monitoring of slaughterhouses and hygiene management to improve the microbiological
safety of carcasses.

Foodborne pathogen
Indicator bacteria
Slaughterhouse

Livestock can easily become contaminated with foodborne patho-
gens originating from feces and intestinal contents spread over the car-
cass surface during the slaughter process; hence, bacterial
contamination of carcasses is a concern for both food safety and meat
quality (Barco et al., 2015; Durmusoglu et al., 2020). In particular,
because slaughterhouses are the first stage of the food production pro-
cess, specific attention is necessary to implement hygiene during the
slaughter process (Nakamura et al., 2022). Kim et al. (2018) also
reported that the microbial level of carcasses from slaughterhouses is
an important aspect of hygiene management, and the quality and
safety of carcasses can be evaluated using indicator microorganisms
such as aerobic bacteria and Escherichia coli.

Cattle can be infected with various foodborne pathogens during the
rearing period, and these infections can be asymptomatic; conse-
quently, foodborne pathogens can eventually be transmitted to
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humans through cattle acting as carriers (Chlebicz & Slizewska,
2018). Recently, the European Food Safety Authority (EFSA, 2022)
reported that Listeria monocytogenes, Shiga toxin-producing E. coli
(STEC), and Salmonella enterica were detected in beef and beef prod-
ucts at rates of 3.9%, 1.7%, and 0.2%, respectively. Moreover, the Cen-
ters for Disease Control and Prevention (CDC) (CDC, 2022, 2023c)
reported human infections of Salmonella enterica and STEC caused by
contaminated ground beef, emphasizing the importance of food safety.
In particular, STEC produces toxins that can cause severe illness in
humans (Davis et al., 2014), and cattle are the most common reservoir
of STEC (Capps et al., 2021).

Camargo et al. (2019) have already reported that contamination of
foodborne pathogens during cattle slaughtering can occur through the
slaughter facility and carcass handling. Moreover, Jiang et al. (2022)
and Dong et al. (2014) also reported that foodborne pathogens from
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carcasses were ultimately transmitted to humans via the processing
stage. Therefore, several countries, including the United States, the
European Union, Canada, and Australia, are verifying carcass safety
management by monitoring indicator microorganisms and foodborne
pathogens (Bohaychuk et al., 2011; EFSA, 2022; Karp et al., 2017;
Wilhelm et al., 2011). Korea has also been continuously monitoring
foodborne pathogens at slaughterhouses nationwide since 2000
(Moon et al., 2021), which involves collecting carcasses from 10 of
approximately 70 cattle slaughterhouses nationwide for annual
monitoring for the presence of seven pathogens: STEC, Salmonella
enterica, Staphylococcus aureus, Clostridium perfringens, Campylobacter
spp., L. monocytogenes, and Yersinia enterocolitica. Therefore, this study
aimed to evaluate the hygiene and quality of cattle carcasses collected
nationwide using the prevalence of foodborne pathogens and the level
of indicator bacteria and to analyze the genetic characteristics of major
foodborne pathogens.

Materials and Methods

Sample collection. Between 2020 and 2021, 200 carcasses
(10 carcasses per slaughterhouse) were collected from 20 cattle
slaughterhouses nationwide. According to the Ministry of Food and
Drug Safety (MFDS) (MFDS, 2023a), a sterile sponge (Nasco, Fort
Atkinson, WI, USA) hydrated with 10 mL of buffered peptone water
(BPW; BD Biosciences, San Jose, CA, USA) was used to swab a compos-
ite 300-cm? surface area that included one flank site (100 cm?), one
brisket site (100 cm?), and one rump site (100 cm?) from each carcass
cooled at 4 °C for 24 h after slaughter. All swab samples were trans-
ferred to the laboratory at 4 °C.

Bacterial count and isolation. Swab samples were inoculated into
30 mL of BPW and homogenized for 1 min using a stomacher (Stoma-
cher 80 Biomaster, Seward, UK). To determine aerobic bacteria and
E. coli counts, serially diluted (tenfold) aliquots of the swab sample
were analyzed using the TEMPO® reader system (bioMérieux, Marcy
I’Etoile, France) and Petrifilm plates (3M, St. Paul, MN), respectively,
according to the manufacturer’s instructions. The isolation of food-
borne pathogens was performed according to the standard microbio-
logical protocol notified by the MFDS (2023a). Briefly, to isolate
STEC, Campylobacter spp., S. aureus, C. perfringens, and Y. enterocolitica,
1 mL of BPW was inoculated into each 9 mL of mEC with novobiocin
(Merck, Darmstadt, Germany), Bolton broth (Oxoid, Basingstoke,
UK) with laked horse blood (Oxoid), Tryptic soy broth (BD Bio-
sciences) with 10% NaCl, Cooked meat medium (BD Biosciences),
and Peptone sorbitol bile broth (Sigma-Aldrich, St. Louis, MO, USA),
respectively, and incubated for 24 h at 37 h°C for E. coli, S. aureus,
and C. perfringens, 48 h at 42 h°C for Campylobacter spp., and 48 h at
30 h°C for Y. enterocolitica. For Salmonella enterica, 10 mL of BPW
was primarily incubated for 24 h at 37 h°C, and then, 0.1 mL of preen-
riched BPW culture was inoculated in 10 mL of Rappaport-Vassiliadis
broth (Oxoid) and incubated for 24 h at 42 h°C. For L. monocytogenes,
1 mL of BPW was first inoculated in 9 mL of Listeria enrichment broth
(BD Biosciences) and incubated for 24 h at 30 h°C, and then, 0.1 mL of
broth was secondarily enriched in 10 mL of Fraser broth (BD Bio-
sciences) for 48 h at 37 h°C. All enriched media were streaked on
tellurite—cefixime—sorbitol MacConkey agar (Oxoid) for STEC,
Baird-Parker agar (Oxoid) supplemented with egg yolk tellurite emul-
sion (Oxoid) for S. aureus, Tryptose—sulfite-cycloserine agar supple-
mented with egg yolk emulsion (Oxoid) for C. perfringens,
Cefsulodin-irgasan-novobiocin agar (BD Biosciences) for Y. enterocol-
itica, Xylose lysine tergitol-4 agar (BD Biosciences) for Salmonella
enterica, and Oxford agar (Oxoid) for L. monocytogenes followed by
incubation for 24 h at 37 h°C. Modified campy blood—free agar (Oxoid)
streaked for Campylobacter spp. was incubated for 48 h at 42 h°C. All
suspected colonies were confirmed via PCR using an AccuPrep Geno-
mic DNA Extraction Kit (Bioneer, Daejeon, Korea) and an AccuPower®
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PCR PreMix (Bioneer, Daejeon, Korea) using primers listed in Table 1.
PCR was performed using TaKaRa PCR Thermal Cycler Dice (Takara,
Seoul, Korea).

Serotyping. STEC was serotyped using commercial antiserum
(Joongkyeom, Gyeonggi-do, Korea) according to the manufacturer’s
instructions and confirmed as described by Iguchi et al. (2015). Sal-
monella enterica were determined using the commercial Salmonella O
and H antiserum (Difco, Detroit, MI, USA) according to the Kauff-
mann-White scheme (Grimont & Weill, 2007). L. monocytogenes and
Y. enterocolitica were also serotyped using the respective commercial
antiserum (Denka Seiken, Tokyo, Japan) according to the manufac-
turer’s instructions.

Antimicrobial susceptibility testing. To determine the minimum
inhibitory concentrations (MICs) for C. perfringens and Y. enterocolitica,
15 and 14 antimicrobial agents were determined by broth microdilu-
tion method using the commercially available Sensititre® panels
ANO2B (TREK Diagnostic Systems, West Sussex, UK) and CMV3AGNF
(TREK Diagnostic Systems), respectively, according to the manufac-
turer’s instructions. Based on the Clinical and Laboratory Standards
Institute guidelines M100 (CLSI, 2020), the susceptibility and resis-
tance of C. perfringens and Y. enterocolitica were interpreted according
to MIC breakpoints for Clostridium spp. and Enterobacteriaceae (Von
Altrock et al.,, 2010), respectively. Furthermore, C. difficile ATCC
700057 and E. coli ATCC 25922 were used as quality control strains
for C. perfringens and Y. enterocolitica, respectively, according to the
CLSI (2020).

Detection of toxin and virulence genes. Toxin genes encoding
the o-toxin (cpa), B-toxin (cpb), e-toxin (etx), f-toxin (iap), enterotoxin
(cpe), and necrotic enteritis B-like (netB) were detected via PCR as
described previously (Baums et al., 2004; Keyburn et al., 2008; Yoo
et al., 1997). Three virulence genes, ail, ystA, and ystB, were also
detected via PCR as described by Platt-Samoraj et al. (2006).

Biotyping. The biotyping of Y. enterocolitica was performed based
on biochemical tests using lipase, esculin, indole, xylose, trehalose,
pyrazinamidase, p-p-glucosidase, and the Voges-Proskauer test
(Weagant & Feng, 2017).

Pulsed-field gel electrophoresis (PFGE). According to the CDC
PulseNet protocol (CDC, 2023b), DNA was digested using Smal
(Takara Bio Inc., Shiga, Japan) and Ascl (Thermo Fisher Scientific,
Cleveland, OH, USA) enzymes for C. perfringens and Y. enterocolitica,
respectively. Electrophoresis was performed using the CHEF-DR® III
PFGE system (Bio-Rad Laboratories, Hercules, CA, USA), and PFGE
banding profiles were analyzed using Bionumerics software version
8.0 (Applied Maths, Sint-Martens-Latem, Belgium). Relatedness was
calculated using the unweighted pair group method with the arith-
metic averages algorithm based on the Dice similarity index. Isolates
that exhibited a coefficient of similarity of >85% were considered
genetically closely related (Lee et al., 2014; Rusak et al., 2014).

Statistical analysis. Pearson’s chi-square test with Bonferroni cor-
rection was performed using the Statistical Package for Social Sciences
version 26 (IBM Corp., Armonk, NY, USA). Differences were consid-
ered significant at P < 0.05.

Results

Levels of aerobic bacteria and E. coli. The distribution of aerobic
bacteria and E. coli counts in cattle carcasses are shown in Table 2. The
aerobic bacterial count was significantly highest at 2.0-3.0 log;o, CFU/
cm? (34.1%), whereas the E. coli count was significantly highest at
under 1.0 log;o CFU/cm? (94.0%) (P < 0.05).

Prevalence of foodborne pathogens. The prevalence of food-
borne pathogens in cattle slaughterhouses and carcasses are shown
in Table 3. Among the 200 carcasses, C. perfringens was the signifi-
cantly highest prevalent pathogen (17.5%), followed by Y. enterocolit-
ica (6.5%), S. aureus (4.0%), L. monocytogenes 1/2a (1.0%), Salmonella
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Table 1
Primer sequences used in this study
Bacteria Target gene Sequence (5-3") Size (bp) Annealing (°C) Reference
Campylobacter coli Random F: AGGCAAGGGAGCCTTTAATC 364 54 On and Jordan (2003)
R: TATCCCTATCTACAAATTCGC
Campylobacter jejuni Random F: CATCTTCCCTAGTCAAGCCT 773 54 On and Jordan (2003)
R: AAGATATGGCACTAGCAAGC
Clostridium perfringens cpa F: GTTGATAGCGCAGGACATGTTAAG 402 55 Yoo et al. (1997)
R: CATGTAGTCATCTGTTCCAGCATC
Listeria monocytogenes Listeriolysin O F: GACATTCAAGTTGTGAA 560 55 Jung et al. (2003)
R: CGCCACACTTGAGATAT
Salmonella enterica InvA F: TTTACGGTCTATTTTGATTTG 443 54 Arnold et al. (2004)
R: TATGCTCCACAAGGTTAATG
Shiga toxin-producing stx F: TTCGCTCTGCAATAGGTA 555 50 Franck et al. (1998)
Escherichia coli R: TTCCCCAGTTCAATGTAAGAT
stx2 F: GTGCCTGTTACTGGGTTTTTCTTC 118 50 Franck et al. (1998)
R: AGGGGTCGATATCTCTGTCC
Staphylococcus aureus clfA F: CTTGATCTCCAGCCATAATTGGTGG 638 55 Mason et al. (2001)
R: GCAAAATCCAGCACAACAGGAAACGA
Yersinia enterocolitica Y1-Y2 F: AATACCGCATAACGTCTTCG 330 62 Wannet et al. (2001)
R: CTTCTTCTGCGAGTAACGTC

Table 2
Distribution of indicator bacterial counts in 200 carcasses from 20 cattle
slaughterhouses®

Count interval
(log1o CFU/cm?)

Percentage (%) of cattle carcasses sampled

Aerobic bacteria E. coli
<1.0 15 (8.1)CPE 188 (94.0)*
1.0-2.0 36 (19.5)° 6 (3.0)®
2.0-3.0 63 (34.1)" 3(1.5)°
3.0-4.0 32 (17.3)%¢ 3 (1.5)°
4.0-5.0 18 (9.7)2CPE 0 (0)®
5.0-6.0 20 (10.8)>¢P 0 (0)®
6.0-7.0 12 (6.5)>F 0 (0)®
>7.0 4 (2.2)F 0 (0)®

# Values with different superscript letters represent significant differences in
the same column (P < 0.05).

Table 3
Prevalence of cattle slaughterhouses and carcasses with isolated foodborne
pathogens®

Pathogen Percentage (%) of positive
samples®
Slaughterhouses Carcasses
(n = 20) (n = 200)
Clostridium perfringens 12 (60.0)* 35 (17.5)*
Listeria monocytogenes 1/2a 1 (5.0)® 2(1.0)¢
Salmonella Infantis 1 (5.0)® 2 (1.0)¢
Shiga toxin-producing Escherichia coli 0:66 1 (5.0° 1 (0.5)¢
Staphylococcus aureus 3 (15.0)® 8 (4.0)%¢
Yersinia enterocolitica 6 (30.0)»B 13 (6.5)®
Yersinia enterocolitica O:5 3 (15.0) 3(1.5)
Yersinia enterocolitica O:8 1(5.0) 3(@1.5)
Yersinia enterocolitica O:untypable 3 (15.0) 7 (3.5)

@ Values with different superscript letters represent significant differences in
the same column (P < 0.05).

enterica subsp. enterica serovar Infantis (S. Infantis) (1.0%), and STEC
0:66 (0.5%) (P < 0.05). In particular, Y. enterocolitica was divided
into two serotypes O:5 and O:8, except the serotype that could not
be identified.

Furthermore, C. perfringens was isolated from the carcasses of 12
(60.0%) of 20 slaughterhouses, and Y. enterocolitica and S. aureus were
isolated from the carcasses of six (30.0%) and three (15.0%) slaughter-
houses, respectively.

Characteristics of C. perfringens and Y. enterocolitica. The
genetic relatedness of the two major pathogens C. perfringens and

Y. enterocolitica are shown in Figure 1. A total of 28 C. perfringens
strains were isolated from 11 slaughterhouses. These isolates were
divided into 21 pulsotypes, and isolates from the same slaughterhouse
were divided into two or more pulsotypes, except for two isolates from
slaughterhouse B. However, all isolates showed the same toxinotype as
type A. Moreover, 12 (42.9%) of 28 C. perfringens isolates showed
resistance to tetracycline, and interestingly, five (83.3%) of six isolates
from two slaughterhouses, located at Chungcheong province, showed
resistance to tetracycline.

A total of 13 Y. enterocolitica strains were isolated from six slaugh-
terhouses. Interestingly, 11 Y. enterocolitica strains were isolated from
four slaughterhouses located in Jeolla province. All isolates were
divided into seven pulsotypes. Three isolates from slaughterhouse O
showed the same pulsotypes, while six isolates from slaughterhouse
G were divided into four pulsotypes. All isolates were divided into
two biotypes 1A and 2, except one isolate that could not be typed. Fur-
thermore, 12 (92.3%) isolates only carried ystB encoding an entero-
toxin, but one (7.7%) isolate carried ail and ystA, which encode an
attachment invasion locus and enterotoxin, respectively. These isolates
showed high resistance to ampicillin (61.5%), cefoxitin (53.8%), and
amoxicillin/clavulanic acid (46.2%), and six isolates (46.2%) showed
multidrug resistance to these three antimicrobial subclasses.

Discussion

Meat promotes the growth of various microorganisms that cause
food poisoning (Terrell & Hernandez-Jover, 2023); therefore, the ini-
tial contamination of carcasses with microorganisms can have an
adverse impact on spoilage and shelf life (Shao et al., 2021). According
to the Livestock Products Sanitary Control Act in Korea (MFDS,
2023b), the hygiene quality of a cattle carcass is considered satisfac-
tory when aerobic bacteria and E. coli counts are < 5.0 and
< 2.0log;o CFU/cm?, respectively. In this study, although 164
(82.0%) of 200 carcasses fulfilled this criterion for aerobic bacterial
counts, 36 (18.0%) carcasses showed aerobic bacterial counts exceed-
ing 5.0 logio CFU/cm?. In contrast, 194 (97.0%) of 200 carcasses ful-
filled the criterion for E. coli counts, and only six (3.0%) carcasses
showed E. coli counts exceeding 2.0 log;o CFU/cm?. Although several
studies have evaluated the hygiene quality of carcasses based on aver-
age aerobic bacterial and E. coli counts (Bohaychuk et al., 2011;
Nyamakwere et al., 2016; Serraino et al., 2012; Van Ba et al., 2018),
it is more important to evaluate the hygiene quality of each carcass
by determining whether it fulfills the microbiological standards.
Moreover, Elder et al. (2000) first reported that cattle hides are the pri-
mary source of carcass contamination during slaughter, which was
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% Similarity PFGE-Smal ID  Isolation date Slaughter Pulsotype Toxinotype Resistance pattern Province Slaughterhouse type Slaughter
$. 8.8 .8 8.3 8 -house capacity
| | CPQl 21 Apr2020 A PT1 A TET Jeolla General slaughterhouse Middle-scale
| \ \ \ \ \ CPQI143 14 Jul 2021 ] PT1 A AMP-CLI-TET-PEN  Gyeongsang  Joint livestock products market Large-scale
| [l ||| cpQi42 14ul2021 7 PT2 A TET Gyeongsang  Joint livestock products market ~ Large-scale
I [l ||| cPQs2 2Dec2020 F PT3 A TET Chungcheong General slaughterhouse Middle-scal
Il Il [l'|| cPQs83 2Dec2020 F PT3 A 3 Chungcl General house Middle-scall
| [ ] CPQ204 2 Dec 2021 M PT4 A TET Gyeonggi Joint livestock products market ~ Large-scale
| ||| CPQ205 2 Dec 2021 M PT4 A - Gyeonggi Joint livestock products market ~ Large-scale
| \ \ H | CPQ203 2 Dec 2021 M PT5 A - Gyeonggi Joint livestock products market Large-scale
| NI CPQ182 13 Oct 2021 L PT6 A - Gangwon Livestock packing center Middle-scale
| I [ cPQso 2Dec2020 F PT7 A TET Chungcheong General slaughterhouse Middle-scal
]| \ \ [ \ } CPQ202 2 Dec 2021 M PT8 A CHL-CLI-TET Gyeonggi Joint livestock products market Large-scale
[l || cPQ33 4mn2020 B PT9 A = Gyeongsang General house Middle-scal
[l| | | cPQ34 41un2020 B PT9 A . Gyeongsang General house Middle-scal
ITH W I cpe2 21apr2020 A PT10 A ) Jeolla General sl house Middle-scal
| | | \ | \ \ CPQ58 21 Jul 2020 D PT11 A TET Chungcheong Livestock packing center Small-scale
\ \ \H \ CPQ59 21 Jul 2020 D PTI2 A TET Chungcheong Livestock packing center Small-scale
\ \ ] | \ CPQ146 15 Jul 2021 K PT13 A - Gyeongsang  Joint livestock products market Large-scale
[[1 ]| cPQias 1512021 K PT13 A - Gyeongsang  Joint livestock products market ~ Large-scale
[ CPQI145 15 Jul 2021 K PT13 A - Gyeongsang  Joint livestock products market ~ Large-scale
| [[ | cPQi47 15112021 K PT13 A Gyeongsang  Joint livestock products market ~ Large-scale
| | \ H \ \ H CPQI144 15 Jul 2021 K PT14 A 2 Gyeongsang  Joint livestock products market Large-scale
B | ||| | cCPQ238 20Dec2021 N PT15 A TET Jeolla General slaughterhouse Small-scale
I 1] cPQsi 2Dec2020 F PT16 A TET Chungcheong General slaughterhouse Middle-scal
| ||| | €PQ237 20Dec 2021 N PT17 A CLI-TET-PEN Jeolla General slaughterhouse Small-scale
|h ] | CcPQ239 20 Dec 2021 N PTI8 A - Jeolla General slaughterhouse Small-scale
| ” | 1] CPQ41 29 Jun 2020 € PT19 A - Gyeongsang  Joint livestock products market ~ Large-scale
Rl CPQ69 3 Aug 2020 E PT20 A - Jeolla General slaughterhouse Middle-scale
H \ | \ \ H | CPQI81 13 Oct 2021 L PT21 A - Gangwon Livestock packing center Middle-scale
B % Similarity PFGE-Ascl ID Isolation dateSlaughterPulsotype Biotype Serotype Virulence gene Resistance pattern — Province Slaughterhouse type ~ Slaughter
e 3 3 3 8 8 -house capacity
: PELE T H LHREELITNE ] YEQL 21 Apr2020 A PT1 2 Untypable ystB AMP Jeolla General slaughterhouse Middle-scale
! LI lr I| \ [[[1I[Tl|]] YEQ7 18Feb2021 G PT2 2 Untypable ystB AMP-AmC-FOX Jeolla  General slaughterhouse Small-scale
VAP PP LT YEQS 18Feb2021 G PT2 2 Untypable stB AMP-AmC-FOX Jeolla General slaughterhouse Small-scale
[0 T WERRETNEFI] YEQ3S 16 Mar2021  H PT2 1A 05 ystB AMP-AmC-FOX Gy General sl house Small-scal
| INFCLER LTI YEQY 18Feb2021 G PT3  Untypable Untypable ystB AMP-AmC-FOX Jeolla  General slaughterhouse Small-scale
|l ||{| IFINITIT YEQLO 18Feb2021 G PT4 2 Untypable ysiB AMP-AmC-FOX Jeolla  General slaughterhouse Small-scale
| | LEVRNEL TTE] YEQI2 18Feb2021 G PT4 1A 05 stB CIP-NAL Jeolla  General slaughterhouse Small-scale
T l WL YEQLL 18Feb2021 G PTS5 1A Untypable ystB AMP-AmC-FOX Jeolla  General slaughterhouse Small-scale
IEE TEE TUEIELN [T YEQS9 21 Dec 2021 O PT6 1A 08 ystB - Jeolla  General slaughterhouse Large-scale
I T |||,| H | [I[|| YEQ60 21 Dec 2021 o PT6 1A 08 ystB - Jeolla General slaughterhouse Large-scale
[T TRL FHEIEEIN T HIT YEQ6L 21 Dee 2021 o PT6 1A 08 ystB - Jeolla General slaughterhouse Large-scale
[T ] 11| [ || | [I[[IlIl] YEQ4 3Aug2020 E PT6 1A 05 ystB FOX Jeolla General slaughterhouse Middle-scale
T | | H l | ||| || [ || |] |H \ YEQ45 11 May 2021 I PI: 1A Untypable  ail-ystd AMP ChungcheongLivestock packing center Small-scale

Figure 1. Dendrogram showing the genetic relationships among isolates characterized by PFGE profiles (A) Clostridium perfringens, (B) Yersinia enterocolitica.
Isolates showing similarities of < 85% in PFGE were considered unrelated. Slaughterhouse types are divided into livestock packing center (slaughter, processing,
and sale), joint livestock products market (slaughter and sale), and general slaughterhouse (slaughter only). Slaughter capacities (cattle/day) are divided into
small-scale (< 90), middle-scale (91-150), and large-scale (> 151). Abbreviations: TET, tetracycline; AMP, ampicillin; CLI, clindamycin; PEN, penicillin; CHL.
chloramphenicol; AmC, amoxicillin/ clavulanic acid; FOX, cefoxitin; CIP, ciprofloxacin; NAL, nalidixic acid.

later directly proven by Nou et al. (2003). Zweifel et al. (2014) also
reported that improper handling of hides can eventually increase the
counts of aerobic bacteria and E. coli in the carcasses. Therefore, for
cattle slaughterhouses that do not comply with microbiological stan-
dards, it is necessary to strengthen the overall hygiene, including the
hide removal process.

Although six of the seven foodborne pathogens tested in this study
were isolated from carcasses, C. perfringens showed the highest preva-
lence (60.0% of slaughterhouses and 17.5% of carcasses). In China and
Iran, the prevalence rates of C. perfringens in cattle carcasses from
slaughterhouses were found to be 21.2% and 40.0%, respectively
(Jiang et al., 2022; Saeid Hosseinzadeh et al., 2018). Carcass contam-
ination by C. perfringens is known to occur through feces during the
slaughter process (Jiang et al., 2022); therefore, cattle should be fasted
over 12 h and showered before slaughter to reduce the possibility of
fecal contamination (MFDS, 2023b). Nonetheless, C. perfringens food
poisoning is the third most common bacterial food poisoning following
that caused by pathogenic E. coli and Salmonella enterica in Korea
(MFDS, 2023c). Moreover, the CDC (2023a) reported that C. perfrin-
gens causes almost one million cases of food poisoning annually in
the United States.

In this study, 28 C. perfringens isolates from 11 slaughterhouses
were divided into 21 pulsotypes through PFGE analysis, but all isolates
showed the same toxinotype as type A. C. perfringens type A in one of
seven toxinotypes (A-G) and cause diseases such as gas gangrene,
enterotoxemia, and enteritis syndromes in both humans and animals
(Uzal et al., 2015). Forti et al. (2020) also reported that C. perfringens
type A only produces cpa of the six toxins, and all isolates in this study
also only carried the cpa C. perfringens isolates showed a high resis-

tance to tetracycline (42.9%) in this study. Interestingly, 83.3% of iso-
lates from two slaughterhouses located in the same province showed
resistance to tetracycline. Antimicrobial resistance genes are mobile
genetic elements that can be transmitted between bacteria through
horizontal gene transfer; therefore, it is believed that antimicrobials
commonly used in the same province result in almost identical resis-
tance patterns.

The second most frequent pathogen identified in this study was
Y. enterocolitica (30.0% of slaughterhouses and 6.5% of carcasses). In
Europe, human yersiniosis is the third most common foodborne zoono-
tic disease following campylobacteriosis and salmonellosis (EFSA,
2022). In general, pigs are recognized as a source of pathogenic
Y. enterocolitica (Chlebicz & Slizewska, 2018), whereas cattle may also
be infected with Y. enterocolitica, although the prevalence is signifi-
cantly lower than that in pigs (McNally et al., 2004). In this study,
18 of the 20 tested slaughterhouses slaughtered both cattle and pigs
simultaneously, and all six slaughterhouses where Y. enterocolitica
was isolated slaughtered cattle and pigs, although the workspace of
these slaughterhouses are separated from each other. Therefore, addi-
tional research should be conducted into the hazard analysis of pig and
cattle slaughterhouses operating together. Milnes et al. (2008) and
McNally et al. (2004) reported that pathogenic Y. enterocolitica bio-
serotype 3/0:5,27 strains were shared between cattle and humans in
the United Kingdom. Furthermore, Bonardi et al. (2018) reported that
pathogenic Y. enterocolitica was isolated from the raw milk of cattle,
which may cause yersiniosis in humans. Interestingly, in this study,
84.6% of Y. enterocolitica strains were isolated from four slaughter-
houses located in the same province. For the aerobic bacterial counts,
the distribution of slaughterhouse exceeding 5.0 log;o CFU/cm? were
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the highest in the same province at 28.3% (data not shown), suggest-
ing that the poor hygiene of these slaughterhouses is related to the
contamination of Y. enterocolitica.

We found that three of 13 Y. enterocolitica strains isolated from six
slaughterhouses were identified as serotypes O:5 and O:8, which are
already known to be commonly associated with human disease
(Fredriksson-Ahomaa et al., 2007; Sabina et al., 2011). Furthermore,
eight and four Y. enterocolitica strains were identified as biotypes 1A
and 2, respectively. Kot et al. (2010) reported that biotype 1A isolates
from humans produce Yersinia heat-stable enterotoxin encoded by
ystB, which appears to be the most appropriate virulence marker for
determining the potential pathogenicity of Y. enterocolitica biotype
1A strains (Bancerz-Kisiel et al., 2017). Seven of eight biotype 1A iso-
lates identified here also carried ystB; however, one biotype 1A isolate
carried the chromosomal virulence marker ail and the enterotoxin-
encoding ystA. Although Y. enterocolitica biotype 1A strains mostly lack
the classical chromosomal virulence genes ail and ystA (Sabina et al.,
2011), studies have shown that ail is highly conserved among Y. ente-
rocolitica strains (Huang et al., 2010), and all human pathogenic Yersi-
nia spp. carry ail in their chromosome (Joutsen et al., 2020). It has
been reported that Y. enterocolitica biotype 2 also carries chromosoma-
llyencoded virulence markers essential for virulence expression, and
most cases of human yersiniosis in Europe belong to biotype 2
(Bancerz-Kisiel et al., 2015; Garzetti et al., 2014). Similarly, all biotype
2 isolates in this study carried ystB. Moreover, 46.2% of Y. enterocolit-
ica isolates showed multidrug resistance, and interestingly, these iso-
lates showed simultaneous resistance to ampicillin, cefoxitin, and
amoxicillin/clavulanic acid. The identical resistance of these isolates
is presumed to be due to the antimicrobial classes primarily used for
cattle in Korea.

In this study, only 15.0% of slaughterhouses and 4.0% of carcasses
were positive for S. aureus, whereas Hong et al. (2023) reported that
the prevalence of S. aureus at pig slaughterhouses and in pig carcasses
in Korea was 40.0% and 11.5%, respectively. Although the prevalence
of S. aureus was lower in cattle carcasses than in pig carcasses, contin-
uous systematic surveillance is required to prevent the human trans-
mission of methicillin-resistant S. aureus (MRSA) because cattle-
associated MRSA has been reported nationwide in Korea, including
in cattle farms, slaughterhouses, retail markets, and bovine mastitic
milk (Lee et al., 2020; Song et al., 2016).

In contrast to the prevalence of other pathogens, L. monocytogenes
was only isolated from two carcasses (1.0%) from one slaughterhouse
(5.0%) in this study. Human listeriosis was first reported in Korea in
2018 (Han et al., 2019), and large-scale outbreaks have not yet been
reported.

S. Infantis is the fourth most common serovar in humans across
Europe (Montoro-Dasi et al., 2023) and has also been frequently
reported in patients in Asia, including in Korea (Iwabuchi et al.,
2011; Kim et al., 2022; Liang et al., 2019). Mechesso et al. (2020)
reported that the prevalence of S. Infantis in cattle carcasses was
6.7% from 2010 to 2012 in Korea but was not identified between
2013 and 2018. In this study, this serovar was isolated from two car-
casses (1.0%) at one slaughterhouse (5.0%). Drauch et al. (2021)
reported that S. Infantis was more resistant to disinfectants and could
persist on farms despite cleaning and disinfection. However, continu-
ous cleaning and disinfection are required for controlling the horizon-
tal spread of S. Infantis throughout the food supply chain.

STEC is a well-known foodborne pathogen frequently isolated from
cattle (Blankenship et al., 2020) and has been specifically found in cat-
tle carcasses and feces from slaughterhouses in Korea (Kang et al.,
2014; Lee et al., 2023). In this study, only one STEC isolate (O:66)
was isolated. STEC is highly pathogenic in humans (Capps et al.,
2021), and further studies on the pathogenicity of 0:66 in humans
are required.
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Campylobacter spp. were not found in this study, and no recent
studies of Campylobacter spp. in cattle slaughterhouses in Korea have
been reported. However, Campylobacter spp. are also an important
foodborne pathogen that can be transmitted to humans through car-
casses, and continuous monitoring is required.

In summary, although the results of our study are not representa-
tive of all cattle slaughterhouses in Korea, they support the need for
continuous slaughterhouse monitoring and hygiene management to
improve the microbiological safety of carcasses.
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