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Leafy green vegetables are a major source of foodborne illnesses. Nevertheless, few studies have attempted to
estimate attribution and burden of illness estimates for leafy greens. This study combines results from three
outbreak‐based attribution models with illness incidence and economic cost models to develop comprehensive
pathogen‐specific burden estimates for leafy greens and their subcategories in the United States. We find that
up to 9.18% (90% CI: 5.81%‐15.18%) of foodborne illnesses linked to identified pathogens are attributed to
leafy greens. Including ‘Unknown’ illnesses not linked to specific pathogens, leafy greens account for as many
as 2,307,558 (90% CI: 1,077,815–4,075,642) illnesses annually in the United States. The economic cost of
these illnesses is estimated to be up to $5.278 billion (90% CI: $3.230‐$8.221 billion) annually. Excluding
the pathogens with small outbreak sizes, Norovirus, Shiga toxin‐producing Escherichia coli (both non‐O157
and O157:H7), Campylobacter spp., and nontyphoidal Salmonella, are associated with the highest number of ill-
nesses and greatest costs from leafy greens. While lettuce (romaine, iceberg, “other lettuce”) takes 60.8% of
leafy green outbreaks, it accounts for up to 75.7% of leafy green foodborne illnesses and 70% of costs.
Finally, we highlighted that 19.8% of Shiga toxin‐producing Escherichia coli O157:H7 illnesses are associated
with romaine among all food commodities, resulting in 12,496 estimated illnesses and $324.64 million annu-
ally in the United States.
Foodborne illnesses pose a substantial public health concern in the
United States, with 48 million cases reported leading to economic costs
of up to $90 billion (Scallan et al., 2011; Scharff, 2020). Although
research has been conducted to estimate the incidence and economic
burden of foodborne illnesses, for policy purposes, it is also crucial
to understand the attribution of foodborne illnesses to specific food
ingredients. This paper aims to develop unique burden of illness esti-
mates based on outbreak‐based attribution models for leafy greens, a
food category of importance due to both the risks and consumption
levels of these products. Although prior studies have explored the attri-
bution of foodborne illness outbreaks across food categories, there is
limited research specifically focusing on leafy green products.

Leafy green commodities require particular attention due to their
increasing consumption and their potential to cause foodborne ill-
nesses. The 2018–2019 FoodNet Population Survey estimated that
80.5% of families consumed leafy greens in the past 7 days, an
increase from 50.6% during the 2006–2007 survey. Ansai and
Wambogo (2021) found that 26.3% of Americans consume leafy
greens. Furthermore, leafy greens have been repeatedly implicated
in foodborne illness outbreaks or contaminations associated with dan-
gerous pathogens, such as Shiga toxin‐producing Escherichia coli
(STEC) (Bottichio et al., 2020; Irvin et al., 2021; Kintz et al., 2019;
Marshall et al., 2020), nontyphoidal Salmonella (Mishra et al., 2017;
Sant'Ana et al., 2014), and L. monocytogenes (Buchanan et al., 2017;
Farber et al., 2021; Mishra et al., 2017; Sant'Ana et al., 2014). These
case reports and risk models, while useful as epidemiological or bio-
logical tools, do not shed light on the aggregate burden of disease or
how this burden is distributed across food categories. Although some
have reported the number of outbreaks associated with leafy greens
(Bean et al., 1996; Gould et al., 2013; Olsen et al., 2000), formal attri-
bution estimates are lacking for leafy green subcategories. Anderson
et al. (2011) did include leafy green subcategories in a risk‐ranking
enters for
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study that identified outbreaks by food‐pathogen pairs, but they did
not generate attribution estimates.
Material and Methods

In this study, we systematically estimate the attribution of food-
borne illnesses to leafy greens, the incidence of these illnesses, and
resulting economic costs. The need to attribute illnesses to specific
foods has been addressed by researchers employing a variety of attri-
bution methods, including the analysis of outbreak data and expert
elicitations (Batz et al., 2005; Hoffmann et al., 2017; Painter et al.,
2013; Pires et al., 2009; Mangen et al., 2015). Consistent with most
studies, we use approaches based on outbreak data (Greig & Ravel,
2009; Painter et al., 2013; Pires et al., 2012, 2019; Scharff, 2020).
Distinctively, our study covers a broad range of etiologies, a perspec-
tive notably absent in most other research (Gould et al., 2013; Pires
et al., 2012, 2019; Batz et al., 2012, 2021; IFSAC, 2021). We combine
attribution estimates with Scallan et al. (2011) pathogen‐based inci-
dence estimates and updated economic cost of illness estimates based
on Scharff (2012, 2015, 2020) as illustrated in Figure 1.

Attribution Modeling Choices. Outbreak‐based attribution mod-
els vary based on specifications and inherent biases. Choices include
single vs. complex food outbreaks, weighting by the number of ill-
nesses, discounting older outbreaks, and including suspected etiolo-
gies. These choices affect outcomes and may introduce biases,
highlighting the complexity of attribution modeling.

To illustrate the impact of modeling choices on attribution values,
we estimate three attribution models (denoted M1, M2, and M3). The
first model (M1), based on the approach taken by the Interagency Food
Safety Analytics Collaboration (IFSAC) in the United States, only
includes simple food outbreaks, but weights outbreaks by the log of ill-
nesses and discounts past outbreaks (IFSAC, 2021). The default esti-
mates for M1 use IFSAC parameter estimates for the discount factor
and bootstrapping to address uncertainty. The second model (M2),
based on Painter et al. (2013) includes complex foods and weight out-
breaks by illnesses but does not apply a discount factor to past out-
breaks. Complex food attribution is estimated using a triangular
distribution with weights from simple food outbreak counts used to
calculate food attribution in complex outbreaks. The final model
(M3), based on Pires et al. (2019), includes complex foods, does not
weigh for illness numbers, and does not discount past outbreaks. For
complex foods, M3 calculates weights using simple food outbreaks that
follow Dirichlet distributions. Then, the weights are used as prelimi-
nary attribution values to calculate the final attribution estimates for
each complex food using Multinomial distributions. Each of the three
models we estimated used outbreak data from 1998 to 2020 and
included outbreaks with suspected etiologies, though alternate
Figure 1. Modeli
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assumptions are tested in a sensitivity analysis. Modeling choices for
M1, M2 and M3 are described and reported in greater detail in Appen-
dix A and Table A1. We provide multiple estimates based on alterna-
tive modeling assumptions in a sensitivity analysis.

For several pathogen categories, the total number of outbreaks is
too small to generate statistically significant leafy green attribution
estimates. This study uses the Agresti‐Coull interval to estimate the
necessary sample size within a defined margin of error. This approach
is described in Appendix B. Estimates for pathogens not meeting these
criteria should be interpreted as “suggestive”.

Outbreak Data. The study utilizes data from National Outbreak
Reporting System (NORS) released by the U.S. Centers for Disease
Control and Prevention over the years 1998 to 2020. The initial data
set included 23,059 outbreaks, which were reduced to 21,763 after
eliminating outbreaks with flawed food vehicle data. Consistent with
previous studies, 519 outbreaks with more than one pathogen were
omitted (Painter et al., 2013; IFSAC, 2021). We also removed out-
breaks with unknown food ingredients and those linked to chemical
contamination. Outbreaks associated with known food ingredients,
but unknown etiologies are included in a separate category titled
“Unknown”. The resulting dataset consisted of 8,809 outbreaks. To
ensure successful integration with the illness and economic models,
pathogen categories were chosen based on the presence in the
Scallan et al. (2011) illness study and the Scharff (2020) economic cost
study. Our analysis includes outbreaks due to 28 etiologic agents plus
those with “Unknown” origin.

Attribution to Leafy Greens. The NORS dataset identifies out-
breaks as one of 17 Interagency Food Safety Analytics Collaboration
(IFSAC) food categories (IFSAC, 2021), including a category for multi-
ple foods (complex foods), greens are part of a larger category titled
“Vegetable Row Crops.” To assess attribution for leafy greens, we
established subcategories based on foods identified in NORS. Then,
we implemented a decision rule relying on the IFSAC category, ingre-
dients, and food vehicles. First, foods not categorized as either “Vege-
table Row Crops” or “Multiple” (e.g., IFSAC category is “Chicken”)
were coded as not being leafy greens. For the remaining outbreaks,
we used “ingredients” identified as being implicated in the outbreak
to assess the foods involved in the outbreak. If no ingredients were
listed, we assessed foods based on foods identified in the broader “food
vehicle” category. The top‐down algorithm is shown in Figure 2.
Through this process, we identified ten subcategories of leafy greens:
iceberg, romaine, other lettuce, spinach, cabbage, kale, parsley, aru-
gula, “other leafy,” and “mixed leafy”. “other leafy” refers to specific
leafy green ingredients that do not fit into the earlier subcategories.
“mixed leafy” covers complex food sources, comprising vegetable‐
based salads, spring mixes, mesclun, and other analogous salads.

Burden of illness model. To assess the number of illnesses
associated with leafy greens, we combined the derived food attribution
ng Approach



Figure 2. Leafy Green Attribution Process
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estimates for each pathogen with Scallan et al.’s (2011) pathogen‐
specific illness estimates. Though somewhat dated, Scallan et al.’s
(2011) estimates for the number of foodborne illnesses caused by
the major known and unknown pathogens in the United States con-
tinue to be used as official estimates in the United States (Centers
for Disease Control and Prevention, 2018). We also calculated illness
estimates for illness due to unknown pathogens.

Economic cost model. The economic cost of foodborne illnesses
associated with leafy greens is assessed by combining pathogen‐based
cost‐per‐case estimates from Scharff’s (2012, 2020) cost model with
the food/pathogen‐based number of illnesses from the burden of illness
model. Cost estimates in the Scharff model have been updated to
account for commodity‐specific increases in prices, workforce compen-
sation and participation, and income. Cost is calculated as Costp =-
Hospitalp+ Physicianp+ Pharmap+CProdp+VSLp+QALYp, where
Hospitalp, Physicianp, and Pharmap represent the medical costs for each
pathogen p; CProdp denotes the productivity losses due to childcare for
each pathogen p; VSLp and QALYp are the values assigned to statistical
life loss and quality‐adjusted life year loss (QALY) respectively (for
each pathogen p). All estimates are updated to March 2023 dollars.
Results

Attribution Estimates. The attribution results in this study are
derived from simple and complex food outbreak samples from the NORS
dataset. Table 1 displays the breakdown of leafy green outbreaks within
these samples and across leafy green subcategories. The inclusion of
leafy greens in complex foods increased the overall contribution to out-
breaks, suggesting a deficiency of only relying on simple food outbreaks.
Moreover, outbreaks associated with “other lettuce” and “romaine let-
tuce” are prevalent. Aggregating “romaine”, “iceberg”, and “other let-
tuce” into a “lettuce family” reveals that 60.8% of simple and complex
leafy green outbreaks are related to this category.

The outbreak samples (Table 1) are used in models M1 (IFSAC,
2021), M2 (Painter et al., 2013), and M3 (Pires et al., 2019). We pro-
3

vide leafy green attribution estimates for 28 pathogens in Tables 2 and
3. Pathogens with sufficient sample size (as determined in Appendix B)
are represented in bold font. Results for other pathogens should be
viewed as suggestive.

Among bacterial pathogens, Shiga toxin‐producing Escherichia coli
(STEC) is prominently attributed to leafy greens, with varying propor-
tions for O157:H7 (11.86% to 32.56%) and non‐O157 (22.38% to
46.94%) serotypes. Cyclospora cayetanensis is the primary parasite
associated with leafy greens, along with Giardia spp. and Norovirus
among viruses. However, caution is advised with Giardia spp. due to
its low sample size. Additionally, 1.09% to 4.05% of illnesses from
unknown etiologies are attributed to leafy greens, indicating their
potential role in outbreaks across different pathogens.

M3 generally underestimates leafy greens' attribution compared to
M2 (Table 3). Overall, M2 attributes 5.20% and M3 attributes 1.67%
of total outbreaks to leafy greens. This trend is consistent with M30s
tendency to underestimate specific food categories. To better under-
stand the effect of food categorization on attribution estimates, we
used the broader IFSAC “Vegetable Row Crop” category to generate
simple food outbreak weights for M2 and M3 (the two models that
used simple food as weights in the estimation of complex food attribu-
tion). As Figure 3 illustrates, both M2 and M3 are affected by how
foods are categorized, though the effect on M3 is much larger. Figure 4
further shows the effect on the estimates of M3 for each leafy subcat-
egory. For this and other reasons (see the discussion), we do not
believe M3 is a reliable estimator for foods with relatively small sam-
ple sizes, such as leafy greens. Consequently, we do not present burden
and cost estimates that build on results from M3.

Many modeling decisions are not uniformly superior to others. For
this reason, we examined alternate modeling assumptions in a sensitiv-
ity analysis for models M1 and M2. Specifically, we examined how
attribution estimates varied when the sample was restricted to (1) out-
breaks excluding suspected etiologies, (2) recent years (2015–2020),
(3) outbreaks weighted by log illnesses, (4) outbreaks weighted by ill-
nesses and year discounting, and (5) outbreaks using log illnesses and
year discounting. Results from models with different combinations of



Table 1
Simple and Complex Food Outbreaks: Leafy Greens from 1998 to 2020 in the United Statesa

Simple Food Outbreaks Simple and Complex Food Outbreaks

Food Categories Bacterial Parasitic Viral Unknown Bacterial Parasitic Viral Unknown

Lettuce 32 2 38 17 82 4 235 108
Romaine 22 3 9 1 36 3 42 27
Iceberg 8 0 6 0 14 0 13 1
Spinach 8 0 2 1 11 1 14 7
Cabbage 3 0 2 1 29 1 40 40
Kale 1 1 0 0 2 1 0 1
Parsley 2 0 1 1 6 0 2 1
Arugula 1 1 0 0 2 1 0 0
Other Leafy 17 0 31 6 25 0 42 12
Mixed Leafy 0 0 0 0 28 1 71 27
Leafy Outbreaks 94 7 89 27 235 12 459 224
Lettuce family Outbreaks 62 5 53 18 132 7 290 136
All Outbreaks 2,626 109 711 1,042 4,053 135 2,031 2,590
Proportion b 3.6% 6.4% 12.5% 2.6% 5.8% 8.9% 22.6% 8.6%

a The number of outbreaks is summarized from 1998 to 2020 in the United States.
b Proportion of leafy outbreaks in all food outbreaks.

Table 2
Attribution results by pathogens: Bacteria between 1998 and 2020 in the United States

M1 b M2 M3

Pathogen a no. Mean 90% CI no. Mean 90% CI Mean 90% CI

Bacillus cereus 125 0.39 0.01–1.18 270 3.14 0.58–6.83 0.30 0.24–0.36
Brucella spp. 6 0.00 0.00–0.00 6 0.00 0.00–0.00 0.00 0.00–0.00
Campylobacter spp. 268 4.43 3.94–5.13 331 6.66 5.78–7.92 2.07 1.90–2.23
Clostridium botulinum 50 0.00 0.00–0.00 62 0.00 0.00–0.00 0.00 0.00–0.00
Clostridium perfringens 377 0.16 0.01–0.47 636 0.35 0.17–0.62 0.29 0.22–0.35
STEC O157:H7 271 32.56 20.30–48.60 341 24.14 21.69–27.66 11.86 11.48–12.23
STEC Non-O157 38 46.94 21.15–65.58 45 21.68 20.33–23.83 22.38 21.90–22.86
Enterotoxigenic E. coli (ETEC) 3 13.92 1.30–32.14 20 5.25 3.40–7.89 12.14 11.76–12.52
Listeria monocytogenes 48 5.13 0.25–16.10 61 2.29 2.22–2.40 1.82 1.66–1.97
Salmonella, nontyphoidal
(Salmonella spp.) 979 2.47 0.99–4.87 1,478 2.13 1.40–3.18 1.43 1.29–1.56
Shigella,spp. 26 0.07 0.03–0.33 73 14.04 12.31–16.54 3.13 2.92–3.33
Staphylococcus aureus 187 0.00 0.00–0.00 434 0.65 0.05–1.52 0.00 0.00–0.00
Streptococcus spp. 1 0.00 0.00–0.00 3 0.00 0.00–0.00 0.00 0.00–0.00
Vibrio cholerae 11 0.00 0.00–0.00 11 0.00 0.00–0.00 0.00 0.00–0.00
Vibrio parahaemolyticus 173 0.00 0.00–0.00 184 0.05 0.00–0.12 0.00 0.00–0.00
Vibrio vulnificus 2 0.00 0.00–0.00 2 0.00 0.00–0.00 0.00 0.00–0.00
Vibrio spp., other 14 0.00 0.00–0.00 15 0.00 0.00–0.00 0.00 0.00–0.00
Yersinia enterocolitica 10 0.00 0.00–0.00 11 0.00 0.00–0.00 0.00 0.00–0.00
Other bacteria 29 0.00 0.00–0.00 57 0.00 0.00–0.00 0.00 0.00–0.00
All bacterial causes 2,626 5.47 3.44–8.02 4,053 3.92 3.10–5.10 2.33 2.15–2.51

a Pathogens that meet sample size criteria for both simple food and complex food outbreaks in bold. Other pathogens meet simple size criteria for complex food
outbreaks only.
b These models are represented as follows: Interagency Food Safety Analytics Collaboration, 2021 (M1), Triangular distribution-based attribution model adapted

from Painter et al., 2013 (M2), and Dirichlet-Multinomial based attribution model adapted from Pires et al., 2019 (M3).
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these assumptions are available in Appendix Table D.1. Attribution to
bacteria is generally less affected by assumptions compared to para-
sites. The divergence from base model estimates is greater for para-
sites, possibly due to the small sample size effects of parasitic
outbreaks. In any event, across models and etiologies, differences are
generally swamped by the confidence intervals associated with indi-
vidual model estimates.

Illness Burden. We integrated the illness incidence model with
attribution results to investigate the number of illnesses for pairs of
pathogens and leafy products using models M1, M2, and M3. Aggre-
gating across all pathogen categories, Table 4 presents the number
of illnesses attributed to leafy green subcategories using the estimated
attribution percentages. Table D.2 highlights the number of illnesses
by the pathogens that meet the sample size criteria in bold.

Table 4 reveals that the lettuce family, including romaine, iceberg,
and “other lettuce”, are associated with the majority of leafy green‐
4

related foodborne illnesses, ranging from 58.8% to 75.7% across mod-
els M1 and M2. Tainted spinach and cabbage are also major sources of
illness. Overall, leafy greens contribute to 1.70 million to 2.31 million
annual illnesses. Nearly half of these illnesses are attributed to out-
breaks with unknown etiologies.

Norovirus is the primarily identified pathogen, followed by STEC,
Salmonella, and Campylobacter, as Appendix Table D.2 demonstrates.

We also examined how leafy green illnesses are distributed across
pathogen categories in M1 and M2. Bacterial pathogens account for
the largest portion, followed by parasites and viruses. A full set of these
estimates are available in Appendix Tables D.3 and D.4.

Economic Burden. We derived estimates for the economic burden
of illness by combining estimates from the illness burden model (see
Table 4) with the cost model, as described in “Cost Modeling” in Dis-
cussion and Appendix C. As shown in Table 5, annual cost estimates of
leafy green−associated illnesses are primarily related to the lettuce



Table 3
Attribution results by pathogens: Parasites and Viruses between 1998 and 2020 in the United States

M1 b M2 M3

Pathogen a no. Mean 90% CI no. Mean 90% CI Mean 90% CI

Cryptosporidium spp. 13 10.44 0.58–29.96 18 4.37 3.36–5.82 5.24 5.24–5.50
Cyclospora cayetanensis 63 9.20 2.17–20.16 79 8.87 7.66–10.62 6.30 6.02–6.58
Giardia spp. 7 23.87 1.35–66.05 9 21.72 18.57–26.14 12.73 12.34–13.11
Trichinella spiralis 21 0.00 0.00–0.00 23 0.00 0.00–0.00 0.00 0.00–0.00
Toxoplasma gondii 3 0.00 0.00–0.00 3 0.00 0.00–0.00 0.00 0.00–0.00
Other Parasites 2 0.00 0.00–0.00 3 0.00 0.00–0.00 0.00 0.00–0.00
All parasitic causes 109 9.05 2.78–18.61 135 8.62 7.41–10.37 5.15 4.89–5.40

Astrovirus 0 0.00 0.00–0.00 0 0.00 0.00–0.00 0.00 0.00–0.00
Hepatitis A 24 0.86 0.04–2.55 32 1.67 1.17–2.40 3.30 3.09–3.51
Norovirus 664 14.08 8.85–21.04 1,958 10.72 4.66–19.44 5.26 5.00–5.51
Rotavirus 5 0.00 0.00–0.00 7 0.00 0.00–0.00 0.00 0.00–0.00
Sapovirus 3 0.00 0.00–0.00 7 12.36 0.94–28.78 0.00 0.00–0.00
Other viruses 15 11.12 2.02–25.79 27 16.51 13.40–20.98 7.45 7.14–7.75
All viral causes 711 13.07 8.23–19.81 2,031 10.41 4.58–18.79 4.73 4.48–4.98

Known 3,489 9.18 5.81–15.18 6,334 8.21 6.40–15.21 4.02 3.59–4.43
Unknown 999 2.14 1.15–4.45 2,475 4.05 1.79–7.30 1.09 0.96–1.21
Total 4,488 3.49 2.05–6.52 8,809 5.20 3.08–7.91 1.66 1.48–1.84

a Pathogens meeting sample size criteria in bold.
b These models are represented as follows: Interagency Food Safety Analytics Collaboration, 2021 (M1), Triangular distribution-based attribution model adapted

from Painter et al., 2013 (M2), and Dirichlet-Multinomial based attribution model adapted from Pires et al., 2019 (M3).

Figure 3. Sensitivity of Leafy Green Attributions to Food Categorization
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family. Illnesses associated with “other lettuce” make up the largest
category of costs, followed by romaine lettuce or unspecified leafy
greens, depending on the attribution model.

Detailed cost estimates by etiology are presented in Appendix
Table D.5 for pathogens with sufficiently large sample sizes, finding
that illnesses involving unknown etiologies, Norovirus, Campylobac-
ter spp., STEC O157:H7, and Salmonella (nontyphoidal) represent
the largest economic costs from contaminated leafy greens. Across
etiology types (see Appendix Tables D.6 and D.7), leafy greens
account for costs of $1,937 million for bacterial, $204 (90% CI:
13–565) million for parasitic, $800 million for viral, and $1,236
million for unknown illnesses annually (based on M1). M2 produces
similar results.
5

Comparison of Burden Estimates. Attribution, illness, and eco-
nomic cost estimates represent different measures used to associate ill-
ness with foods. Attribution measures the likelihood that a particular
illness is associated with a given food and pathogen. Illness measures
convert attribution estimates to the aggregate number of persons
affected by each pathogen. Finally, measures of economic burden
weigh illnesses with a proxy for the severity of illness (cost). As a
result, the pathogen with the highest attribution estimate may not
have the highest illness or economic burden.

Table 6 summarizes attribution, illness, and cost estimates for
major pathogens, along with rankings in each burden category and
model. Across all models, STEC O157:H7/Non‐O157 and Norovirus ill-
nesses are largely attributed to leafy greens. Attribution of Shigella,



Figure 4. Sensitivity of Leafy Green Subcategory Attributions to Food Categorization, M3

Table 4
The number of illnesses caused by all pathogens attributed to leafy greens per yeara

# of illnesses 90% CI b % in all leafy # of illnesses 90% CI % in all leafy

Models M1d M2

Lettuce family 1,284,967 (444,998–2,675,127) 75.7 1,357,179 (632,961–2,398,639) 58.8
Other Lettuce c 1,022,804 (383,758–2,072,926) 60.3 1,195,884 (582,398–2,078,236) 51.8
Romaine c 228,645 (56,712–516,416) 13.5 132,959 (32,076–278,025) 5.8
Iceberg c 33,518 (4,529–85,786) 2.0 28,336 (18,538–42,426) 1.2

Cabbage 136,591 (1,579–436,759) 8.1 221,661 (50,709–467,442) 9.6
Spinach 90,721 (12,128–220,415) 5.3 46,053 (12,374–94,478) 2.0
Kale 6,157 (333–17,987) 0.4 3,002 (2,028–4,402) 0.1
Parsley 126,434 (7–400,015) 7.5 68,674 (65,729–70,496) 2.9
Arugula 7,862 (373–23,722) 0.5 1,978 / 0.1
Other Leafy 44,011 (33,704–64,648) 2.6 309,907 (289,429–339,352) 13.4
Mixed Leafy 0 / 0 300,093 (6,628–203,282) 13.0
All Leafy 1,696,756 (1,007,926–3,139,791) 100 2,307,558 (1,077,815–4,075,642) 100

a All pathogens include known and unknown pathogens from Scallan et al. (2011).
b 90% CI is the 90% confidence interval.
c The estimates of three lettuce subcategories sum up to the estimate of lettuce family.
d These models are represented as follows: Interagency Food Safety Analytics Collaboration, 2021 (M1), and Triangular distribution-based attribution model

adapted from Painter et al., 2013 (M2).

X. Yang, R. Scharff Journal of Food Protection 87 (2024) 100275
spp. to leafy greens ranks 3rd in M2 but much behind in M1. Despite
STEC not being associated with the largest number of illnesses, Noro-
virus leads in leafy green‐associated illnesses, followed by STEC Non‐
O157, and Campylobacter spp. using M1. M2 maintains the same
pathogens but alters the order between the two STECs. Additionally,
M1 ranks Norovirus, Campylobacter spp., STEC O157:H7, and Sal-
monella spp. as the pathogens with the highest economic costs. M2 also
lists these pathogens as the top four but in a different sequence. Out-
breaks with unknown etiologies are excluded from this table, but
“Unknown” would constitute the largest number of illnesses and high-
est cost category if included.
6

Discussion

Results in Context. In this study, we employed three attribution
models to explore the relationship between leafy greens and foodborne
illnesses. We found that leafy greens are responsible for up to 9.18%
(90% CI: 5.81–15.18%, M1) of all known pathogen‐caused foodborne
illnesses, or 2,307,558 (90% CI: 1,077,815–4,075,642) illnesses annu-
ally. This leads to health‐related costs of up to $5.278 billion (90% CI:
$3.230–$8.221 billion), emphasizing the significant burden on health-
care and productivity due to the consumption of contaminated leafy
greens.



Table 5
Economic Cost of Leafy Green Illnesses ($million) per year a

Economic Cost 90% CI b % in all leafy Economic Cost 90% CI % in all leafy

M1 d M2

Lettuce family 2,925.07 (844.21–6,553.32) 70.0 3,207.24 (2,060.50–4,855.65) 60.8
Other Lettuce c 1931.71 (575.07–4300.72) 46.2 2664.07 (1717.83–4024.09) 50.5
Romaine c 728.52 (239.20–1529.26) 17.5 377.53 (220.81–602.87) 7.2
Iceberg c 264.84 (29.95–723.34) 6.3 165.64 (121.83–228.64) 3.1

Cabbage 310.63 (5.23–980.59) 7.4 401.44 (96.48–839.97) 7.6
Spinach 181.58 (27.88–442.54) 4.3 126.31 (79.12–194.17) 2.4
Kale 30.55 (1.49–89.85) 0.7 11.77 (10.13–14.14) 0.2
Parsley 144.36 (0.08–456.42) 3.5 327.09 (322.15–334.21) 6.2
Arugula 26.01 (1.23–78.49) 0.6 10.92 (6.32–17.55) 0.2
Other Leafy 558.86 (492.06–688.19) 13.4 648.56 (614.50–697.55) 12.3
Mixed Leafy 0 / 0.0 544.60 (41.34–1268.32) 10.3
All Leafy 4177.99 (2324.85–7688.04) 100 5277.95 (3230.48–8221.11) 100

a The major cost components change in CPI was updated to the March 2023 level and cost estimates from Scharff (2012).
b 90% CI is the 90% confidence interval.
c The estimates of three lettuce subcategories sum up to the estimate of lettuce family.
d These models are represented as follows: Interagency Food Safety Analytics Collaboration, 2021 (M1), and Triangular distribution-based attribution model

adapted from Painter et al., 2013 (M2).

Table 6
Leafy Green Attribution, Annual Illnesses, and Annual Economic Costs in the United States

Attribution percentage (Ranking) # of illnesses (Ranking) Economic Cost (million $) (Ranking)

Models M1 e M2 M1 M2 M1 M2

Pathogen a

Bacillus cereus c 0.39 (9) 3.14 (7) 249 (7) 1,993 (7) 0.11 (10) 0.86 (11)
Campylobacter spp. 4.43 (6) 6.66 (6) 37,425 (3) 56,259 (2) 550.64 (2) 827.75 (1)
STEC O157:H7 32.56 (2) 24.14 (1) 20,561 (5) 15,244 (6) 534.15 (3) 396.02 (4)
STEC Non-O157 46.94 (1) 21.68 (2) 52,931 (2) 24,449 (3) 175.13 (6) 80.89 (7)
Listeria monocytogenes 5.13 (5) 2.29 (8) 82 (9) 36 (10) 188.91 (5) 84.41 (6)
Salmonella, nontyphoidal 2.47 (7) 2.13 (9) 25,356 (4) 21,926 (4) 468.96 (4) 405.52 (3)
Shigella,spp b 0.07 (10) 14.04 (3) 91 (8) 18,434 (5) 1.44 (8) 291.83 (5)
Staphylococcus aureus 0.00 (11) 0.65 (11) 0 (11) 1,577 (8) 0.00 (11) 1.75(10)
Vibrio parahaemolyticus 0.00 (11) 0.05 (12) 0 (11) 0 (12) 0.00 (11) 0.00 (12)
Cyclospora cayetanensis 9.20 (4) 8.87 (5) 1,049 (6) 1,012 (9) 6.20 (7) 5.98 (8)
Hepatitis Ab 0.86 (8) 1.67 (10) 14 (10) 26 (11) 0.92 (9) 1.78 (9)
Norovirus 13.00 (3) 10.72 (4) 710,121 (1) 585,688 (1) 799.42 (1) 659.34 (2)
Giardia spp. d 23.87 21.72 18,339 16,690 171.36 155.95

a Pathogens meet all sample size criteria for both simple food and complex food outbreaks in bold.
b Pathogens meet simple size criteria for only complex food outbreaks not in bold.
c the most significant etiologies with respect to attribution percentage, burden of illnesses, and economic costs are in bold.
d Giardia spp. does not meet the sample size criteria, but we still present the estimates without rankings.
e These models are represented as follows: Interagency Food Safety Analytics Collaboration, 2021 (M1), and Triangular distribution-based attribution model

adapted from Painter et al., 2013 (M2).
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The paucity of comprehensive estimates for leafy green attribution
limits our ability to make direct comparisons with other studies in the
United States. Our estimates are lower than Painter et al.'s (2013) esti-
mates for “leafy”, partly because their definition of “leafy” covers a
broader group of foods. Additionally, our lower values may be a result
of improved surveillance and regulatory successes on leafy greens. In
any case, similar to Painter, and other outbreak characterization stud-
ies (Kintz et al., 2019; Marshall et al., 2020), we find that leafy greens
make up a large portion of Escherichia coli outbreaks and illnesses
(though low sample size ETEC illnesses are less likely to be attributed
to leafy greens in our study). IFSAC (2021), which only covers the
broader “vegetable row crop” category, predictably has higher attribu-
tion estimates than ours.

Attribution Modeling. Numerous models have been developed to
attribute illnesses to foodborne pathogens. In countries with well‐
developed surveillance systems, outbreak‐based attribution studies
are a feasible method for using routinely collected data to link foods
with specific pathogens. Outbreak‐based food attribution studies have
been published covering many global regions including the United
7

States (IFSAC, 2021; Scharff, 2020; Painter et al., 2013; Hoffmann
et al., 2012), Canada (Ravel et al., 2009), Europe (Chanamé Pinedo
et al., 2022; Pires et al., 2009; Van Cauteren et al., 2017), Japan
(Kumagai et al., 2020), and China (Li et al., 2020), among others.
Pires et al. (2019) used outbreak data to examine the larger category
“produce” for major global regions, finding lower STEC attribution
estimates in the Americas than our study has and even lower estimates
for European and Western Pacific regions. Though foodborne illness is
a problem everywhere, results from outbreak‐based studies differ
regionally due to variations in environmental conditions, industry
practices, and data quality.

Other modeling approaches have also been used to estimate food
attribution for select pathogens. Expert elicitation approaches are
widely used where outbreak data is sparse or unreliable. For example,
a World Health Organization Study (Hoffmann et al., 2017) used
expert elicitation to examine food attribution for 11 pathogens across
14 global regions, including those with only rudimentary surveillance
systems. Sapp et al. (2022) used a similar approach to attribute 9 food
groups to 7 pathogens in 3 African countries. Expert elicitation has
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also been used in developed countries to supplement outbreak esti-
mates (e.g. Batz et al., 2012). More recently, improved microbial sub-
typing of pathogens (e.g. through whole genome sequencing) has
allowed for the estimation of attribution estimates for sporadic cases
(e.g. Franz et al., 2016; Mughini‐Gras et al., 2018, 2022). This
approach is promising where widespread testing of all foods and ill
humans (in the absence of an outbreak) is conducted and available
to researchers.

Consistent with most foodborne illness attribution studies in the
United States, we use outbreak data as the basis for our analysis.
Within this literature, multiple models have been developed to convert
outbreak data to attribution estimates. Each involves making multiple
decisions that balance biases inherent in the data. For this reason, we
derived attribution estimates based on multiple models including one
(M1) that is currently being used by a consortium of experts from the
U.S. FDA, USDA, and CDC (IFSAC, 2021), one (M2) that has been the
basis for published CDC estimates (Painter et al., 2013), and a highly
cited newer model (M3) (Pires et al., 2019) that seeks to improve upon
M1 and M2.

The modeling decision of whether to include outbreaks tied to sin-
gle foods or complex foods is crucial. Limiting to single food/ingredi-
ent outbreaks reduces false attributions but underestimates risks from
foods typically found as ingredients in complex foods. Three
approaches highlighted in this paper represent different approaches
to this problem: M1 bases estimates on simple food outbreaks, M2
includes complex foods and their ingredients, and M3 includes com-
plex foods but uses compound probability distributions. While M3
aims to reduce bias, it generates less accurate estimates, especially sen-
sitive to how food categories are defined. Moving from broad cate-
gories to specific ones like romaine lettuce reduces matches for
specific foods, affecting attribution estimates. This exclusion may tech-
nically improve accuracy, but biases result due to overestimations in
other categories.

Additionally, leafy green representation in simple food outbreaks is
much smaller than in complex food outbreaks. This may mean that
leafy greens are safer in simple foods than their presence in complex
outbreaks, or it may mean that leafy greens, as one of many ingredi-
ents in complex foods, are not as likely to be correctly identified as
the single cause of a given outbreak.

Other modeling choices that varied across the models were
whether to weigh outbreaks by number of illnesses and whether to dis-
count or omit older outbreaks. Results from alternative specifications
of models M1 and M2 can be found in Appendix Table D1.

In conclusion, no attribution model is “perfect” or universally accu-
rate in generating point estimates. M1 that omits the complex food
may also bias the attributions. M2’s estimates assume a triangular dis-
tribution and can be imperfect. However, M1 and M2 are not sensitive
to different food categorizations. On the other hand, M3 is extremely
sensitive to the size of food ingredients in food categories and hence
results in a downward bias in leafy subcategories. Since our main goal
is to estimate the leafy greens and leafy subcategories, M1 and M2 are
more appropriate for leafy green attributions.

Cost Modeling. Our cost model is based on the enhanced cost of
illness model pioneered by Scharff et al., (2009), as updated in
Scharff (2020). Costs consist of direct medical costs, lost productivity
for caregivers, and indirect nonmedical costs, including estimates for
the value of statistical life and QALY losses. This approach is similar
to the approach used by the U.S. FDA (Minor et al., 2015) and repre-
sents an effort to include all economic costs. Direct costs in our model
are similar to those in Hoffmann et al. (2012) which uses a more con-
servative cost of illness approach but replaces QALY losses with wage‐
based productivity losses. Recognizing lost quality of life as an impor-
tant component of economic burden, Hoffmann does report nonmone-
tized QALY losses separately. European studies generally use a more
conservative cost‐of‐illness approach (e.g. Tariq et al., 2011; Mangen
et al., 2015), generally avoiding the calculation of nonmonetary losses.
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We adjusted our cost model to account for the high inflation rate in
the United States since April 2021. This has affected all components in
the cost model, including medical costs and valuation of mortality risk
and QALYs. In response, the cost model has been updated from
September 2019 (Scharff, 2020) to March 2023 dollars to reflect
changing prices and income. In particular, the U.S. Bureau of Labor
Statistics (2023) estimated 12.9%, 7.2%, and 5.0% increases in hospi-
tal services, physician services, and pharmaceutical prices to con-
sumers during this period. Productivity and wages also increased by
4.2% and 18.2% over the same period, resulting in higher cost esti-
mates for the value of statistical life, QALY losses, and productivity
losses. The inflation trend in the United States differs from the eco-
nomic circumstances in European countries so the update of our cost
estimates only reflects certain macroeconomic circumstances in the
U.S.

Limitations and Future Research. Though we believe that the
attribution estimates are the best possible given available data and
models, we do recognize that there are several limitations associated
with our approach. We have already discussed some of the modeling
limitations in the section. Most importantly, our dataset is limited to
outbreaks that were identified and reported to NORS. Given that only
a fraction of foodborne illnesses is linked to identified and reported
outbreaks, the NORS data may not accurately represent the entirety
of foodborne illnesses. Specifically, the use of outbreaks to estimate
attribution across all foodborne illnesses is built on the assumption
that outbreaks are roughly representative of sporadic cases. This
assumption may be mistaken if outbreaks associated with some foods
or pathogens are easier to detect than others. For example, if sporadic
outbreaks are more likely to occur on leafy greens than the other food,
then we may underestimate the attribution percentage of outbreaks to
leafy greens, and vice versa. Moreover, our attribution could underes-
timate the percentage of leafy greens in viruses among all pathogen
categories. There are two reasons: first, bacterial causes of illnesses
are generally easier to identify compared to viral causes of illnesses.
Second, it is more likely to identify the source of outbreaks for less
consumed food or recognized high‐risk food. Thus, our attribution esti-
mates, illnesses, and cost of leafy greens to viruses could be lower than
the actual numbers because leafy greens are frequently consumed by
U.S. consumers and are not “high risk” in bacteria. In the sensitivity
analysis, we presented different weights using outbreaks, illnesses,
or log illnesses to reflect the impact of a large‐size outbreak on the
weighted attribution estimates. However, if NORS data do not capture
sporadic outbreaks, neither weights shall provide an unbiased attribu-
tion estimate though the model is perfectly accurate (Painter et al.,
2013). Researchers should be aware of this problem when using attri-
bution estimates.

Another limitation lies in the identification of specific food ingredi-
ents in complex foods. The use of recipes to derive the ingredients for
these foods likely leads to the incorrect inclusion or omission of foods
when the recipe used varies from the standardized recipe. To some
extent, future efforts that build on sophisticated techniques such as
machine learning may mitigate this problem, though it is likely to
remain a problem for the foreseeable future.

The sample size is also a limitation for many of the food pathogen
pairs that we examined. Though we have given some guidance on
which estimates are more likely to be based on data with sufficient
sample size, the actual sample size required depends on the precision
of estimates that are needed. As illustrated above, many of the food/-
pathogen pairs investigated do not have sufficient sample sizes and
should be used with caution.

In the future, both new data and attribution models are desired. To
some extent, better detection of outbreaks will lead to NORS outbreak
surveillance data that is more representative. As for modeling, there
may be an opportunity to improve the general approach Pires et al.
(2019) used by accounting for the scaling effects that currently intro-
duce bias into the model.
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In this study, we derive new attribution, burden, and cost estimates
for foodborne illnesses associated with leafy greens in the United
States. Our primary focus is on the generation of new food attribution
estimates for foods across 28 identified pathogens. These are com-
bined with the existing burden of illness estimates (Scallan et al.,
2011) and updated economic cost estimates (Scharff, 2020) to more
fully capture burdens associated with illnesses from leafy green foods.
Though others have examined attribution for the broader category of
“produce” or examined the attribution for a single pathogen (e.g.,
Anderson et al., 2011; Marshall et al., 2020), this is the first study to
examine the attribution of illness to leafy greens across a wide range
of pathogens and for specific leafy green subcategories.

We believe our estimates are an advance over previous research in
two ways. First, we provide attribution estimates for subcategories of
leafy greens across a wide range of pathogens. Second, we build upon
our attribution estimates to provide illness burden and economic cost
estimates. These contributions give industry and government food
safety experts a multifaceted tool to evaluate and prioritize risks asso-
ciated with leafy greens. Attribution estimates, by themselves, can be
used to prioritize efforts by those focused on examining a single patho-
gen. The addition of illness estimates allows for inter‐pathogen com-
parisons of risk. Cost estimates play two roles. First, cost is highly
correlated with illness severity and, thus, represents an alternative
method of ranking risks by combining illness burden with illness sever-
ity. Unlike other risk rankings, cost is an objective measure that does
not rely on subjectively assigning weights to various factors. Second,
understanding cost is an important input in evaluating the effective-
ness of targeted interventions. This is useful for both industry food
safety specialists and government regulators.
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