1	In situ Evaluation of Paenibacillus alvei in Reducing Carriage of Salmonella Newport on
2	Whole Tomato Plants
3 4	Sarah Allard ¹² , Alexander Enurah ¹ , Errol Strain ¹ , Patricia Millner ³ , Steven L. Rideout ⁴ ,
5	Eric W. Brown ¹ , Jie Zheng ¹
6	
7	¹ Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College
8	Park, Maryland 20740
9	² Department of Plant Science and Landscape Architecture, University of Maryland,
10	College Park, Maryland 20742
11	³ Environmental Microbial and Food Safety Laboratory, Agriculture Research Service,
12	U.S. Department of Agriculture, Beltsville, MD 20705
13	⁴ Virginia Tech, Eastern Shore Agricultural Research and Extension Center, Painter, VA
14	23420
15	
16	*Corresponding author:
17	Center for Food Safety & Applied Nutrition, U.S. Food & Drug Administration, College
18	Park, Maryland, 20740; Tel: (240) 402-1855; Fax: (301) 436-2644; Email:
19	jie.zheng@fda.hhs.gov
20	
21	Running Title: Salmonella biological control
22	Keywords: biological control, Tomato, Salmonella enterica, Paenibacillus alvei
23	

ABSTRACT

25	Recently, tomatoes have been implicated as a primary vehicle in foodborne outbreaks
26	of Salmonella Newport and other Salmonella serovars. Long-term intervention measures
27	to reduce Salmonella prevalence on tomatoes remain elusive for growing and post-
28	harvest environments. A naturally-occurring bacterium identified by 16S rDNA
29	sequencing as Paenibacillus alvei was isolated epiphytically from plants native to the
30	Virginia Eastern Shore tomato growing region. After initial antimicrobial activity
31	screening against Salmonella and 10 other bacterial pathogens associated with the human
32	food supply, strain TS-15 was further used to challenge an attenuated strain of S .
33	Newport on inoculated fruits, leaves, and blossoms of tomato plants in an insect-screened
34	high tunnel with a split-plot design. Survival of Salmonella after inoculation was
35	measured for groups with and without the antagonist at days 0, 1, 2, 3, and 5 for blossoms
36	and 6 for fruits and leaves, respectively. Strain TS-15 exhibited broad range antimicrobial
37	activity against both major foodborne pathogens and major bacterial phytopathogens of
38	tomato. After P. alvei strain TS-15 was applied onto the fruits, leaves, and blossoms of
39	tomato plants, the concentration of S. Newport declined significantly ($p \le 0.05$) compared
40	with controls. Astonishingly, more than 90% of the plants had no detectable levels of
41	Salmonella by day 5 for blossoms. The naturally-occurring antagonist strain TS-15 is
42	highly effective in reducing carriage of Salmonella Newport on whole tomato plants. The
43	application of <i>P. alvei</i> strain TS-15 is a promising approach for reducing the risk of
44	Salmonella contamination during tomato production.
45	

46

47	INTRODUCTION
48	The United States is one of the world's leading producers of tomatoes. Fresh and
49	processed tomatoes account for more than \$2 billion in annual farm cash receipts
50	(http://www.ers.usda.gov/topics/crops/vegetables-pulses/tomatoes.aspx). U.S. fresh field-
51	grown tomato production has consistently increased over the past several decades.
52	Concurrently, an increasing number of outbreaks caused by various serovars of
53	Salmonella enterica have been associated with consumption of fresh and fresh-cut
54	tomatoes (1).
55	Contamination of produce can occur during field production or in the postharvest
56	processing facility. Once contamination occurs, S. enterica serovars are able to survive
57	on and in the tomato fruit despite the tomato's acidic interior (2-4). While a wide range of
58	chemical sanitizers and physical treatments have been investigated with varying degrees
59	of success for killing Salmonella on tomatoes at postharvest (5-7), no "kill-step" exists
60	currently in processing that would eliminate Salmonella from contaminated tomatoes. At
61	preharvest, there are no cultivars with resistance to other important diseases caused by
62	plant pathogens that are also resistant to colonization of foodborne pathogens such as
63	Salmonella (8). Following good agricultural practices (GAPs) (9) is the only available
64	control right now to reduce the risk of tomatoes becoming contaminated with Salmonella
65	in the field, indicating that additional interventions, such as biological control, are
66	needed.
67	Biological control of plant diseases using microorganisms or their metabolites (10-12)
68	offers a safe and effective alternative to the use of synthetic agrichemicals. The aim of

69 this study was to isolate potential bacterial antagonists against Salmonella, to examine

their modes of action, and to test their effectiveness in reducing carriage of *Salmonella* on
whole tomato plants in a high tunnel setting.

- 72
- 73

MATERIALS AND METHODS

74 Isolation and screening of antagonistic bacteria. The native microflora of various 75 plant organs (including leaves, shoots, roots, and blossoms) and soil from various Eastern 76 Shore tomato growing locations were examined. Simply, three grams of plant material or 77 soil was mixed for 5 min in 1ml of phosphate-buffered saline (PBS). An aliquot (100 µl) 78 was plated onto Nutrient Yeast Glucose agar (NYGA). Ten colonies with unique 79 morphologies that developed within 48 h at 30°C under aerobic conditions were picked 80 for further purification and a 3% KOH test, to differentiate the Gram status without 81 staining (13). The pure cultures were then tested for antagonistic activity *in vitro* using an 82 agar plug method (14). Briefly, pour plates of each test organism were prepared by 83 mixing a 4 ml suspension of an overnight plate culture with sterile water in ca. 20 ml of 84 warm Tryptic Soy agar (TSA). After overnight incubation at 35°C, agar plugs were 85 punched from the agar with a sterile 10-mm stainless steel borer. Plugs were placed on 86 TSA agar containing a lawn of 10⁶ cells of Salmonella Newport (15) and incubated at 87 35°C. Clear zones surrounding the plugs were measured at incubation periods of 24, 48, 88 and 96 h, respectively. 89 Bacterial cultures. Isolates of potential bacterial antagonists and indicator strains 90 (Table 1) were propagated on TSA at 35°C. Stock cultures grown overnight at 35°C on

91 TSA, were then resuspended in brain heart infusion broth (BHI) with 25% glycerol and

92 stored at -80°C. Three tomato plant associated bacterial pathogens including Erwinia

94 Ralstonia solanacearum race 5 were grown on TSA under 25°C (Table 1). 95 Phenotypic and biochemical characterizations of potential bacterial antagonists. 96 The morphological characteristics of potential bacterial antagonists were observed by 97 Gram and spore stains. These isolates were further tested with the Vitek® 2 compact 98 Biochemical Identification System (BioMerieux, Inc., Durham, NC) and the Biolog 99 Omnilog Microbial Identification System (Biolog, Hayward, CA) with GEN III 100 MicroPlates for biochemical properties according to manufactures' instructions. 101 16S rRNA gene amplification, and sequencing. Genomic DNA of potential bacterial 102 antagonists was extracted using the Wizard® genomic DNA purification kit (Promega, 103 Madison, WI). A pair of universal primers specific for bacterial 16S rRNA, Eubac27 and 104 R1492 (16), were used to amplify the corresponding gene. PCR amplification of the 16S 105 rRNA was performed with a Hotstart *Tag* plus DNA polymerase kit (QIAGEN, Valencia, 106 CA) under the following conditions: after an initial 5-min incubation at 95°C, the mixture 107 was subjected to 30 cycles, each including 1 min at 95°C, 1 min at 58°C, and 1 min at 108 72°C. A final extension was performed at 72°C for 10 min. Primers 4F, 27F, 357F, 578F, 109 1000R, and 1492R were used for sequencing (16). The BLAST algorithm was used for a 110 homology search against Genbank. Only results from the highest-score queries were 111 considered for phylotype identification, with 99% minimum similarity (17). 112 Determination of mode of action and spectrum of antimicrobial activities. To 113 determine mode of action and antimicrobial spectrum of the bacterial antagonists, both

carotovora subsp. carotovora, Pseudomonas syringae pv. tomato strain dc3000, and

114 agar plug assay (using bacterial culture) and bioscreen assay (using culture supernatant)

115 were performed against a broad spectrum of major foodborne pathogens and bacterial

116	phytopathogens (Table 1). In the agar plug assay, bactericidal effects against pathogenic
117	bacterial strains in the zone of inhibition were confirmed when no viable cells were
118	recovered on TSA plates. In the bioscreen assay, the antagonist supernatant from
119	overnight culture was filter sterilized with a 0.22 μ m pore-size cellulose acetate (CA)
120	membrane filter. Each 3 ml TS-15 cell-free culture supernatant (CFCS) was inoculated
121	with 3 μl of $10^8cfu/mL$ bacterial culture (Table 1). Aliquots (200 $\mu l)$ were then dispensed
122	into sterile Bioscreen C microwell plates (Growth Curves USA, Piscataway, NJ) and
123	incubated as described for the respective bacterial strains. Bacterial growth was
124	determined in five replicates by measuring O.D. ₆₀₀ at 20-min intervals for 24 hrs.
125	Tomato fruit assay. Red round ripe tomato fruits $(130 \pm 20 \text{ g each})$ were purchased
126	from a local supermarket and refrigerated for no more than 3 days. Tomatoes were
127	equilibrated to room temperature (RT) before testing and washed with 75% ethanol for
128	surface sterilization and to remove any waxy residue if present. After air drying in a
129	laminar flow hood, tomatoes were aseptically placed onto sterile metal trays with the
130	stem scars facing down. A twenty microliter drop (18) of S. Newport overnight culture
131	suspension (washed twice with PBS, and resuspended in 5 ml of PBS) was placed within
132	a 3-cm-diameter circle on the side of the tomato, equidistant from both ends of the
133	tomato. The Salmonella inoculum was allowed to dry before antagonist inoculation. A 40
134	μl drop of antagonist culture suspension (washed twice with PBS, and resuspended in 5
135	ml of fresh TSB) or 40 μl of TSB only was then placed on top of the Salmonella
136	inoculum. After 1.5 h in the hood, completely air-dried samples were placed in a
137	humidity chamber (<i>i.e.</i> a closed container filled with 1.5 L of water in a 30°C incubator).
138	After 24 h incubation, each tomato was placed in a sterile Whirl-Pak TM filter bag

139 containing 30 ml of PBS and hand rubbed for 5 min to dislodge surface inoculated

140 Salmonella. The wash suspension was diluted 10-fold in PBS and 0.1 ml aliquots of the

141 appropriate dilutions were spread onto XLD agar (Becton Dickinson and Company,

142 Sparks, MD) to determine the surviving *Salmonella* populations.

143 Field trials in high tunnel. (i) Plants. Trials were performed in 2010 (July through 144 September) on tomato cultivar BHN602 in an insect-screened high tunnel at the United 145 States Department of Agriculture (USDA), Beltsville Agricultural Research Center 146 (BARC) north farm, Beltsville, Maryland. Tomato plants were grown from seeds in one 147 of the BARC greenhouses in commercial organic peat mix (Johnny's 512 mix, Johnny's 148 Selected Seeds, Fairfield, ME) and fertilized with Neptune's Harvest Organic 149 Fish/Seaweed Blend fertilizer (Gloucester, MA) before and after transplanting. In the 150 high tunnel, fertilizer was supplied from a single injector through drip tape supplemented 151 with an OMRI-approved calcium source to prevent blossom end rot. Black plastic mulch 152 was used to cover the 8 planting beds (2' x 20' each) over the drip tape. Planting slits were 153 made in the black plastic at 15" intervals to accommodate 13 transplants per bed. Plants 154 were staked using the Florida weave method with nylon support strings when 10" high. 155 All plants were irrigated immediately after transplanting and at least weekly to achieve 1-1.5" water and meet fertility requirements. Soil moisture was monitored by irrometers 156 157 and digitally on HOBO weather station that was located in the center of the high tunnel. 158 Temperature, RH (Relative Humidity), PAR (Photosynthetically Active Radiation), and 159 total SR (Solar Radiation) were monitored and recorded as well during this time. 160 (ii) Experimental design. A split-plot design was used with two treatments 161 (Salmonella only and Salmonella with antagonist) as the first level sub-plot. Inoculation

162	sites including leaf, blossom, and tomato fruit were each assigned a second level sub-plot,
163	with each inoculation site as an independent experimental unit; and day of harvest post-
164	inoculation as a repeated measure. The second level corresponds to harvests used for 0 (2
165	hrs after inoculation as a benchmark for % recovery), 1, 2, 3, and 5 or 6 days persistence
166	trials. Thirteen plants were planted in each plot. One plant on each end of each bed served
167	as an uninoculated border plant, leaving 11 replicates per plot.
168	(iii) Inoculum preparation. Because of concerns about the safe use of pathogens in the
169	field, an attenuated S. Newport strain #17 $\Delta tolC$::aph was constructed for the high tunnel
170	study. The <i>tolC</i> gene on the S. Newport strain #17 chromosome was replaced by a
171	cassette containing a kanamycin resistance gene using the one-step inactivation method
172	described by Datsenko and Wanner (19). TolC is an outer membrane protein not only
173	important for the efflux of small compounds, but also for the export of large proteins.
174	Disruption of <i>tolC</i> abolished the ability of <i>S</i> . Typhimurium to adhere, invade, and survive
175	in eukaryotic cells (20). S. Enteritidis tolC mutant was shown to be avirulent in the
176	BALB/c mouse model as well (21). TSB suspensions of S. Newport strain #17
177	$\Delta tolC::aph$ overnight culture were washed twice in PBS and then spot inoculated to three
178	marked leaves (20 μ l each), six to nine blossoms (10 μ l each), and three breaker to red
179	tomato fruits (20 μ l each) for a final concentration of ~10 ⁹ CFU/ml per plant. The
180	inoculation spots were allowed to air dry (~ 1 h) before applying the antagonist.
181	Antagonist cell suspensions were made from a bacterial lawn. After twice washing with
182	PBS, cells were resuspended in 10 ml of TSB. Forty microliters of antagonist cell
183	suspension or sterile TSB were applied to the same inoculation spot on leaves and fruits,
184	and 10 µl to Salmonella-inoculated blossoms, of each plant in the 'with' or 'without'

185	antagonist group, respectively. Leaves, blossoms, and fruits were harvested on days 0, 1,
186	2, 3, and 5 (for blossoms) or 6 (for leaves and fruits) post inoculation (dpi).
187	(iv) Sample collection. Inoculated leaves, blossoms, and fruits from each plant were
188	removed with sterile scissors and placed in individual plastic zipper bags, which were
189	sealed and transported in an insulated cooler to the laboratory for analysis within 1 h. For
190	leaves and blossoms, each sample bag was filled with 15 ml and 10 ml of PBS,
191	respectively, and hand-rubbed for 3 min to dislodge surface populations of Salmonella.
192	For fruits, each sample bag was filled with 30 ml of PBS and subjected to sonication at
193	55 Hz/min for 30 sec (22), which has been shown to be harmless to the infecting
194	microorganisms. The PBS was diluted or concentrated through filtration (at later time
195	points in the experiment) and surface plated (0.1 ml in duplicate) on TSA-kan (50µg/ml).
196	Plates were incubated at 35°C overnight and counted for kanamycin-resistant colonies.
197	Two colonies were randomly picked from each TSA-kan plate and confirmed by PCR
198	using a set of verification primers (19).
199	(v) Statistical analysis. Estimates of the rate of reduction in bacterial counts were
200	obtained by fitting a robust linear model of the log transformed CFU onto days (days
201	after inoculation). The slopes of the fitted lines from antagonist treated and untreated
202	surfaces were compared for differences in the rates of reduction. The analysis was
203	performed using the R statistical software package, version 2.11.1, with the robust
204	library. The results were tallied for each combination of plant location, antagonist, plant,
205	and day. Within each plant location, both a regression and a rank test compared the
206	effect of using the antagonist with that of not using it. Sum of the counts on all plates

208 procedure, discussed by Blodgett (23), accounted for the TNTC plates. 209 210 RESULTS 211 Isolation and identification of antagonistic bacteria. A large number of 212 environmental isolates from the tomato field were screened for antimicrobial activity 213 against S. Newport. Two isolates, one from an epiphytic leaf surface of native Eastern 214 Shore vegetation and the other from Eastern Shore tomato soil, showed distinct inhibition 215 areas on basal TSA agar. These isolates formed pale colonies and swarmed vigorously on 216 TSA. Morphologically, the isolates were rod-shaped, $0.7-0.95 \ \mu m$ by $3.18-3.42 \ \mu m$, 217 gram-positive bacteria. Upon prolonged incubation on an agar medium, cells produced 218 central endospores. 219 The isolates were positive for oxidase, nitrate reduction, gelatin liquefaction, starch 220 hydrolyzation, casein hydrolysis, glucose fermentation, and urease but negative for 221 catalase, indole production, and H₂S formation. The bacterium grew well in TSB broth 222 under aerobic conditions. Genomic analysis showed the 16S rRNA gene of both isolates 223 shares over 99.0% sequence similarity with that of Paenibacillus alvei. Biolog Gen III 224 MicroPlate confirmed the high similarity of both isolates (> 99%) with P. alvei. Thus, it 225 was concluded that both isolates belong to P. alvei, and they were given strain 226 designations of A6-6i and TS-15 respectively. 227 Broad antimicrobial spectrum of P. alvei strains A6-6i and TS-15. In vitro agar 228 plug assays showed inhibition zones against all the indicator strains including six major

divided by the sum of the volumes (0.1 ml) of the initial sample. An imputation

229 foodborne pathogens and three major tomato bacterial phytopathogens when challenged

230	with both <i>P. alvei</i> isolates (Fig. 1A and 1B). Notably, the antagonist migrated outward
231	from the plug after forming the inhibition zone with SD (S. dysenteriae) or LM (L.
232	monocytogenes), and the antagonistic growth ring expanded with time, especially in the
233	case of Listeria. Both A6-6i and TS-15 had a wide range of inhibition against MRSA
234	strains with zone diameters from 15 to 35 mm, and 15 to 20 mm, respectively. It is also
235	interesting to note that strain A6-6i showed strong inhibitory effects on various MRSA
236	strains tested despite the fact that some strains were resistant to up to 14 different
237	antimicrobial drugs.
238	When supernatants were tested against the panel of gram-negative and gram-positive
239	bacteria using the Bioscreen assay, both A6-6i (Fig. 2) and TS-15 (not shown) CFCS
240	exhibited a broad spectrum of antimicrobial activity, in which the lag phase was
241	significantly extended in all the pathogens tested and the cell density was largely reduced
242	at the end of incubation. Furthermore, the lag phase in CS (C. sakazakii), SD (S.
243	dysenteriae), LM (L. monocytogenes), and some MRSA strains were extended to almost
244	24 h in both A6-6i and TS-15 CFCS. Compared to A6-6i, CFCS from TS-15 had much
245	stronger inhibitory effect when tested against SN (S. Newport) (not shown).
246	Efficacy of <i>P. alvei</i> A6-6i and TS-15 on tomato fruit in humidity chambers. <i>S.</i>
247	Newport showed significant reduction on the tomato fruit surface by both P. alvei strains
248	A6-6i and TS-15. However, comparing an average of 0.5 log reduction by A6-6i, TS-15
249	had a 5 log reduction in the S. Newport population applied to tomato fruits (Fig 3).
250	Numbers of S. Newport recovered from tomato surfaces were 100 times less on average
251	when the antagonist was added prior to Salmonella on the tomato surface. Nevertheless,
252	no significant difference was found in the rate of population decline regardless of

whether the antagonist was inoculated before (Fig. 3A) or after *S*. Newport inoculation
(Fig. 3B), pointing to a potential bactericidal mode of action rather than simple
competitive exclusion.

256 Field trials in high tunnel using *P. alvei* TS-15. Based on the results from tomato 257 fruit assay, P. alvei strain TS-15 was selected for further high tunnel field trials. During 258 field trials from July through September 2010, the maximum daily temperature and RH 259 varied, respectively, between 26.7 and 37.8°C and between 56% and 80% (available at 260 www.wunderground.com/history/). At Day 0, variations were detected between the group 261 without TS-15 and the group with TS-15 on leaf and blossom but not on tomato in terms 262 of Salmonella population after inoculation (Fig. 4). Taking all the variations into effect, 263 the concentration of *Salmonella* was significantly lower ($p \le 0.05$) on plants with TS-15 on 264 leaves, blossoms, and fruits from 1 to 5 (for blossom) or 6 (for leaf and tomato) dpi (Fig. 265 4). Notably, close to 100% of the 'Salmonella only' plants still had detectable levels of 266 Salmonella at the end of the blossom and leaf trials, whereas only 2 plants (< 20%) had 267 detectable levels of Salmonella in the 'antagonist group' in the blossom trial and 6 plants 268 (\sim 50%) in the leaf trial. Moreover, the rate of decrease in bacterial concentration was 269 significantly greater (p≤0.05) on leaves and blossoms with TS-15 versus those without 270 TS-15; decreases were 12-fold per day versus 2.7-fold per day for leaves, and 8.9-fold 271 versus 1.4-fold for blossoms, respectively (Fig. 5). Nevertheless, no statistically 272 significant difference was found in the mortality rate of *Salmonella* on tomato fruits. 273

274

DISCUSSION

275	Contaminated tomatoes have been implicated in several high profile outbreaks in the
276	U.S. (24, 25), and Salmonella enterica serovar Newport is amongst the most recurring
277	serovars implicated in foodborne outbreaks associated with tomatoes (26, 27). Extensive
278	research has been done to show that Salmonella can contaminate tomato fruit at the
279	primary production level through soil, irrigation water, and blossoms (4, 28-30), allowing
280	the pathogen to colonize the exterior and interior of developing fruit. Due to the risk of
281	internalization, Salmonella needs to be controlled at the farm level. Biological control has
282	been widely applied to suppress plant diseases caused by phytopathogens (31, 32).
283	However, few have been reported to control human foodborne pathogens on produce
284	especially at the preharvest level. With only 1- to 2-log reductions, limited success was
285	achieved using bacteriophages as biocontrol agents (33-35). Enterobacter asburiae strain
286	JX1demonstrated over a 5-log reduction in the growth of Salmonella in the rhizosphere
287	of tomato plants and on the developing fruit (34), however, this bacterium can cause an
288	array of diseases in humans itself (36), making it an undesirable candidate for
289	commercial commodities destined for the human food supply. In this study, two new
290	bacterial strains, A6-6i and TS-15, exhibiting substantial antimicrobial efficacy against a
291	broad range of foodborne pathogens and tomato bacterial phytopathogens, were
292	identified as <i>P. alvei</i> , a bacterium very rarely associated with human infections (37).
293	Results of the <i>in situ</i> tomato plant trials further showed that <i>P. alvei</i> strain TS-15 is
294	highly effective in reducing the carriage of S. Newport on tomato plants, indicating its
295	potential use as a novel biocontrol agent to mitigate Salmonella contamination at the
296	preharvest level.

297	The antagonist may exhibit competitive exclusion over certain foodborne pathogens;
298	many Paenibacillus species are already part of the natural microbial community in soil,
299	water, and rhizosphere of various plants (38). Results from the bioscreen and agar plug
300	assays, however, indicate that the inhibitory (i.e. bacteriostatic and bacteriocidal) effects
301	of this antagonist on foodborne pathogens can be mainly attributed to its antimicrobial
302	activities. Whole genome sequencing was performed to help identification of diverse
303	antibiotic biosynthetic genes present in these two isolates (39). A few novel antimicrobial
304	agents, with activities against many foodborne pathogens including Salmonella spp., E.
305	coli O157:H7, L. monocytogenes, S. dysenteriae, C. sakazakii, and multi-drug resistant S.
306	aureus, were discovered in our laboratory (unpublished data).
307	In the high tunnel trial, P. alvei TS-15 was much more effective in suppressing the
308	growth of Salmonella on blossoms and on leaves than on tomato fruits. However, this
309	seemed more to do with the lack of persistence of Salmonella on tomato fruit surfaces
310	rather than any lack of Paenibacillus activity. The mortality rate in the Salmonella
311	control group was much higher on tomato fruits compared to that for leaves and
312	blossoms. In general, the smooth, waxy surfaces of developing tomato fruits was
313	associated with reduced survival of microbes $(40-42)$, and this has implication for the
314	application strategy for this biocontrol agent. Despite this caveat in the tomato surface
315	study, the effectiveness of biological intervention has been shown to be greatly impacted
316	by the ratio of antagonist to pathogen in culture (43). Provided that the ratio of <i>P. alvei</i>
317	TS-15 to S. Newport was only 1:1 in the fruit assay and high tunnel trial and the actual
318	level of Salmonella on naturally contaminated produce is much lower than 6 log CFU/g
319	of tissue, application of <i>P. alvei</i> TS-15 at 6 log CFU/g of tissue as used in this study

- 320 should be more than sufficient to inhibit the growth of Salmonella on tomato to a
- 321 clinically significant level.
- 322 In summary, the results of this study have demonstrated the efficacy of *P. alvei* TS-15
- 323 against Salmonella on the blossoms and leaves of tomato plants. In order to more
- 324 successfully apply such an agent, studies will be conducted to determine the efficacy of
- 325 P. alvei TS-15 in suppressing Salmonella in the rhizosphere of tomato plants, to develop
- 326 formulation P. alvei TS-15 for use against Salmonella and other foodborne pathogens on
- 327 produce crops, and to assess the biological safety due to environmental and human
- 328 exposure to this organism incidentally in the food and feed supply. Such studies will
- 329 ascertain suitability of this promising new microbial agent as an early intervention tool in
- 330 our battle against *Salmonella* contamination of fresh-cut produce.
- 331
- 332
- 333
- 334

336**Table 1.** Strains used in the present study337

Strain	Reference or source
Salmonella enterica subsp. enterica serovar Newport #17	CFSAN laboratory collection
Salmonella enterica subsp. enterica Saintpaul	CFSAN laboratory collection
Salmonella enterica subsp. enterica Montevideo 42N	CFSAN laboratory collection
Salmonella enterica subsp. enterica Javiana	CFSAN laboratory collection
Salmonella enterica subsp. enterica Typhimurium 368477	CFSAN laboratory collection
Salmonella enterica subsp. enterica Typhimurium SAR C #1	SGSC ^a
Salmonella enterica subsp. enterica Typhi SAR C #3	SGSC
Salmonella enterica subsp. arizonae SAR C #5	SGSC
Salmonella enterica subsp. arizonae SAR C #7	SGSC
Salmonella enterica subsp. arizonae SAR C #9	SGSC
Salmonella bongori SAR C #11	SGSC
Salmonella bongori SAR C #13	SGSC
Salmonella bongori SAR C #15	SGSC
Escherichia coli O157:H7 IS O57	CFSAN laboratory collection
Escherichia coli O157:H7 EDL933	CFSAN laboratory collection
Escherichia coli ATCC 51434	ATCC ^b
Escherichia coli ATCC BAA-179	ATCC
Shigella dysenteriae 2457T	CFSAN laboratory collection
Shigella dysenteriae BS103	CFSAN laboratory collection
Cronobacter sakazakii E932	CFSAN laboratory collection
Cronobacter sakazakii E784	CFSAN laboratory collection
Listeria monocytogenes N1-225	CFSAN laboratory collection
Listeria monocytogenes R2-583	CFSAN laboratory collection
Methicillin-resistant Staphylococcus aureus #9	CFSAN laboratory collection
Methicillin-resistant Staphylococcu aureus #12	CFSAN laboratory collection
Methicillin-resistant Staphylococcu aureus #28	CFSAN laboratory collection
Methicillin-resistant Staphylococcu aureus #29	CFSAN laboratory collection
Methicillin-resistant Staphylococcu aureus #30	CFSAN laboratory collection
Staphylococcu aureus NRS70	NARSA ^c
Staphylococcu aureus NRS106	NARSA
Staphylococcu aureus NRS107	NARSA
Staphylococcu aureus NRS271	NARSA
Salmonella enterica Newport #17 \DeltatolC::aph	CFSAN laboratory collection
Erwinia carotovora subsp. carotovora	Dr. Dilip Lakshman, ARS ^d
Pseudomonas syringae pv. tomato strain dc3000	Dr. Dilip Lakshman, ARS
Ralstonia solanacearum race 5	Dr. Dilip Lakshman, ARS

338 ^aSGSC, Salmonella Genetic Stock Centre, University of Calgary, Canada

- 340 341
- ^b ATCC, American Type Culture Collection, Manassas, VA, USA ^c NARSA, Network on Antimicrobial Resistance in *Staphylococcus aureus*, Chantilly, VA, USA ^d ARS, Agricultural Research Service, Department of Agriculture, Beltsville, MD, USA

- 344

346 Figure legends:

347	Figure 1. In vitro inhibition of foodborne pathogens and tomato bacterial
348	phytopathogens by <i>Paenibacillus alvei</i> A6-6i and TS-15 on tryptic soy agar (TSA).
349	The inhibition zones (mm) were measured against strains from Salmonella spp.,
350	Escherichia coli (E. coli), Cronobacter sakazakii (CS), Listeria monocytogenes (LM),
351	Shigella dysenteriae (SD), Methicillin sensitive Staphylococcus aureus (MSSA),
352	Methicillin resistant Staphylococcus aureus (MRSA), Ralstonia solanacearum race 5 (R.
353	solanacearum), Pseudomonas syringae pv. tomato strain dc3000 (P. syringae), and
354	Erwinia carotovora subsp. carotovora (E. carotovora). The plot represents the lowest,
355	highest, and average measurements in each of the species listed above. The experiment
356	was repeated twice.
357	
358	Figure 2. Growth inhibition of major foodborne pathogens in <i>P. alvei</i> A6-6i cell free
359	culture supernatant (CFCS). Brain Heart Infusion (BHI) broth was used as a control.
360	Bacterial growth of A) L. monocytogenes (LM), S. dysenteriae (SD), E. coli O157, C.
361	sakazakii (CS), and S. Newport strains; and B) Methicillin resistant S. aureus (MRSA)
362	strains in P. alvei A6-6i CFCS and BHI was determined in five replicates by measuring
363	O.D. ₆₀₀ at 20-min intervals for 24 hrs. The experiment was repeated twice.
364	
365	Figure 3. Recovery of S. Newport from intact tomato fruit surfaces after treatment

- 366 with antagonist inoculations over 24 h at 30°C in humidity chamber. A) Recovery of
- 367 S. Newport with S. Newport inoculated first; B) Recovery of S. Newport with antagonist

- 369 experiments each with 10 replicates (n=20).

371	Figure 4. Recovery of an S. Newport attenuated strain from tomato plants including
372	leaves, blossoms, and tomato fruits. In the high tunnel study, S. Newport was recovered
373	from leaves, blossoms and tomato fruits 0, 1, 2, 3, and 5 (for blossoms) or 6 (for leaves
374	and tomatoe fruits) dpi with S. Newport only or S. Newport plus antagonist co-
375	inoculation. The results were tallied for each combination of plant location, antagonist,
376	plant, and day. Estimated recovery of S. Newport on each sample point from log
377	transformed data in control (-) and antagonist treatment (+) panel was scatter plotted for
378	leaf (A), tomato fruit (B), and blossom (C).
379	
380	Figure 5. The rate of decrease in S. Newport concentration post inoculation on
381	leaves, blossoms, and tomato fruits. In high tunnel setting, leaves, blossoms and tomato
382	fruits were harvested on 0, 1, 2, 3, and 5 (for blossoms) or 6 (for leaves and tomato fruits)
383	dpi to recover any remaining S. Newport. The rate of decrease in S. Newport
384	concentration in control (light grey bar) and antagonist treatment (dark grey bar) groups
385	was calculated and compared. Results were shown as means with +/- 2SE. * represents
386	that the rate of decrease in S. Newport concentration was significantly greater ($P < 0.05$)
387	compared with that in the control group.

389 REFERENCES

390	1.	Hedberg CW, Angulo FJ, White KE, Langkop CW, Schell WL, Stobierski
391		MG, Schuchat A, Besser JM, Dietrich S, Helsel L, Griffin PM, McFarland
392		JW, Osterholm MT. 1999. Outbreaks of salmonellosis associated with eating
393		uncooked tomatoes: implications for public health. The Investigation Team.
394		Epidemiol Infect 122:385-393.
395	2.	Asplund K, Nurmi E. 1991. The growth of salmonellae in tomatoes. Int J Food
396		Microbiol 13: 177-181.
397	3.	Guo X, Chen J, Brackett RE, Beuchat LR. 2002. Survival of Salmonella on
398		tomatoes stored at high relative humidity, in soil, and on tomatoes in contact with
399		soil. J Food Prot 65:274-279.
400	4.	Zheng J, Allard S, Reynolds S, Millner P, Arce G, Blodgett RJ, Brown EW.
401		2013. Colonization and internalization of <i>Salmonella enterica</i> in tomato plants.
402		Appl Environ Microb 79:2494-2502.
403	5.	Beuchat LR. 1998. Surface decontamination of fruits and vegetables eaten raw: a
404		review.
405	6.	Mattson TE, Johny AK, Amalaradjou MA, More K, Schreiber DT, Patel J,
406		Venkitanarayanan K. 2011. Inactivation of Salmonella spp. on tomatoes by
407		plant molecules. Int J Food Microbiol 144:464-468.
408	7.	Maitland JE, Boyer RR, Eifert JD, Williams RC. 2011. High hydrostatic
409		pressure processing reduces Salmonella enterica serovars in diced and whole
410		tomatoes. Int J Food Microbiol 149:113-117.
411	8.	Barak JD, Kramer LC, Hao LY. 2011. Colonization of tomato plants by
412		Salmonella enterica is cultivar dependent, and type 1 trichomes are preferred
413		colonization sites. Appl Environ Microb 77:498-504.
414	9.	Bihn EA, Gravani RB. 2006. Role of good agricultural practices in fruit and
415		vegetable safety, p. 21-53. In Matthews KR (ed.), Microbiology of Fresh Produce.
416		ASM Press, Washington D.C.
417	10.	Lindow SE, Brandl MT. 2003. Microbiology of the phyllosphere. Appl Environ
418		Microb 69: 1875-1883.
419	11.	Pertot I, Zasso R, Amsalem L, Baldessari M, Angeli G, Elad Y. 2008.
420		Integrating biocontrol agents in strawberry powdery mildew control strategies in
421		high tunnel growing systems. Crop Prot 27:622-631.
422	12.	Yazici S, Yanar Y, Karaman I. 2011. Evaluation of bacteria for biological
423		control of early blightdisease of tomato. Afr J Biotechnol 10:1573-1577.
424	13.	Ryu E. 1940. A simple method of differentiating between Gram-positive and
425		Gram-negative organisms without staining. Kitasato Arch. Exp. Med. 17:58-63.
426	14.	Visser R, Holzapfel WH, Bezuidenhout JJ, Kotze JM. 1986. Antagonism of
427		Lactic Acid Bacteria against Phytopathogenic Bacteria. Appl Environ Microbiol
428		52: 552-555.
429	15.	Kuper KM, Boles DM, Mohr JF, Wanger A. 2009. Antimicrobial susceptibility
430		testing: a primer for clinicians. Pharmacotherapy 29: 1326-1343.
431	16.	DeLong EF. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci
432		U S A 89: 5685-5689.

433	17.	Stackebrandt E, Goebel BM. 1994. Taxonomic note: a place for DNA-DNA
434		reassociation and 16S rRNA sequence analysis in the present species definition in
435		bacteriology. Int. J. Syst. Bacteriol. 44:846-849.
436	18.	Chen Z, Zhu C. 2011. Modelling inactivation by aqueous chlorine dioxide of
437		Dothiorella gregaria Sacc. and Fusarium tricinctum (Corda) Sacc. spores
438		inoculated on fresh chestnut kernel. Lett Appl Microbiol 52:676-684.
439	19.	Datsenko KA, Wanner BL. 2000. One-step inactivation of chromosomal genes
440		in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640-
441		6645.
442	20.	Buckley AM, Webber MA, Cooles S, Randall LP, La Ragione RM,
443		Woodward MJ, Piddock LJ. 2006. The AcrAB-TolC efflux system of
444		Salmonella enterica serovar Typhimurium plays a role in pathogenesis. Cell
445		Microbiol 8: 847-856.
446	21.	Stone BJ, Miller VL. 1995. Salmonella enteritidis has a homologue of tolC that
447		is required for virulence in BALB/c mice. Mol Microbiol 17:701-712.
448	22.	Gorman SP. 1991. Microbial adherence and biofilm production, p. 271-295. In
449		Denyer SP, Hugo WB (ed.), Mechanisms of action of chemical biocides: their
450		study and exploitation. Blackwell Scientific Publications, Oxford.
451	23.	Blodgett RJ. 2008. Mathematical treatment of plates with colony counts outside
452		the acceptable range. Food Microbiol 25:92-98.
453	24.	2007. Multistate outbreaks of <i>Salmonella</i> infections associated with raw tomatoes
454		eaten in restaurantsUnited States, 2005-2006. MMWR Morb Mortal Wkly Rep
455		56: 909-911.
456	25.	2008. Outbreak of Salmonella serotype Saintpaul infections associated with
457		multiple raw produce itemsUnited States, 2008. MMWR Morb Mortal Wkly
458		Rep 57: 929-934.
459	26.	Aronson SM. 2008. The decline and fall of the red tomato. Med Health R I
460		91: 267.
461	27.	Orozco L, Rico-Romero L, Escartin EF. 2008. Microbiological profile of
462		greenhouses in a farm producing hydroponic tomatoes. J Food Prot 71:60-65.
463	28.	Greene SK, Daly ER, Talbot EA, Demma LJ, Holzbauer S, Patel NJ, Hill TA,
464		Walderhaug MO, Hoekstra RM, Lynch MF, Painter JA. 2008. Recurrent
465		multistate outbreak of Salmonella Newport associated with tomatoes from
466		contaminated fields, 2005. Epidemiol Infect 136:157-165.
467	29.	Shi X, Namvar A, Kostrzynska M, Hora R, Warriner K. 2007. Persistence and
468		growth of different Salmonella serovars on pre- and postharvest tomatoes. J Food
469		Prot 70: 2725-2731.
470	30.	Jablasone J, Brovko LY, Griffiths MW. 2004. A research note: the potential for
471		transfer of Salmonella from irrigation water to tomatoes. J Sci Food Agr 84:287-
472		289.
473	31.	Walsh UF, Morrissey JP, O'Gara F. 2001. Pseudomonas for biocontrol of
474		phytopathogens: from functional genomics to commercial exploitation. Curr Opin
475		Biotech 12:289-295.
476	32.	Govindasamy V, Senthikumar M, Magheshwaran V, Kumar U, Bose P,
477		Sharma V, Annapurna K. 2011. Bacillus and Paenibacillus spp.: Potential

478		PGPR for Sustainable Agriculture, p. 333-364. In Maheshwari DK (ed.), Plant
479		Growth and Health Promoting Bacteria. Springer Berlin Heidelberg.
480	33.	Kocharunchitt C, Ross T, McNeil DL. 2009. Use of bacteriophages as
481		biocontrol agents to control Salmonella associated with seed sprouts. Int J Food
482		Microbiol 128: 453-459.
483	34.	Ye J, Kostrzynska M, Dunfield K, Warriner K. 2009. Evaluation of a
484		biocontrol preparation consisting of Enterobacter asburiae JX1 and a lytic
485		bacteriophage cocktail to suppress the growth of Salmonella Javiana associated
486		with tomatoes. J Food Prot 72:2284-2292.
487	35.	Garcia P, Martinez B, Obeso JM, Rodriguez A. 2008. Bacteriophages and their
488		application in food safety. Lett Appl Microbiol 47:479-485.
489	36.	Brenner DJ, McWhorter AC, Kai A, Steigerwalt AG, Farmer JJ, 3rd. 1986.
490		Enterobacter asburiae sp. nov., a new species found in clinical specimens, and
491		reassignment of Erwinia dissolvens and Erwinia nimipressuralis to the genus
492		Enterobacter as Enterobacter dissolvens comb. nov. and Enterobacter
493		nimipressuralis comb. nov. J Clin Microbiol 23:1114-1120.
494	37.	Coudron PE, Payne JM, Markowitz SM. 1991. Pneumonia and empyema
495		infection associated with a Bacillus species that resembles B. alvei. J Clin
496		Microbiol 29: 1777-1779.
497	38.	Gardener BBM. 2004. Ecology of Bacillus and Paenibacillus spp. in agricultural
498		systems. Phytopathology 94:1252-1258.
499	39.	Luo Y, Wang C, Allard S, Strain E, Allard MW, Brown EW, Zheng J. 2013.
500		Draft Genome Sequences of Paenibacillus alvei A6-6i and TS-15. Genome
501		Announc 1.
502	40.	Trebolazabala J, Maguregui M, Morillas H, de Diego A, Madariaga JM.
503		2013. Use of portable devices and confocal Raman spectrometers at different
504		wavelength to obtain the spectral information of the main organic components in
505		tomato (Solanum lycopersicum) fruits. Spectrochim Acta A 105:391-399.
506	41.	Bauer S, Schulte E, Thier HP. 2004. Composition of the surface wax from
507		tomatoes - I. Identification of the components by GC/MS. Eur Food Res Technol
508		219: 223-228.
509	42.	Reina-Pinto JJ, Yephremov A. 2009. Surface lipids and plant defenses. Plant
510		Physiol Bioch 47:540-549.
511	43.	Liao CH. 2009. Control of foodborne pathogens and soft-rot bacteria on bell
512		pepper by three strains of bacterial antagonists. J Food Prot 72:85-92.
513		-
514		

B)

